五角星形线的笛卡尔坐标方程式可设为:

r=10+(3*sin(θ*2.5))^2 

x=r*cos(θ)

y=r*sin(θ)              (0≤θ≤2π)

根据这个曲线方程,在[0,2π]区间取一系列角度值,根据给定角度值计算对应的各点坐标,然后在计算出的坐标位置绘制一个填充色交替变换的小圆,从而得到沿五角星形线摆动的小圆的动画效果。

编写如下的HTML代码。

<!DOCTYPE html>

<html>

<head>

<title>沿曲线摆动的小圆</title>

</head>

<body>

<canvas id="myCanvas" width="400" height="400" style="border:3px double #996633;">

</canvas>

<script type="text/javascript">

var canvas = document.getElementById('myCanvas');

var context = canvas.getContext('2d');

var i = 0;

var j = Math.PI/32;

var t = 0;

var col = ['red','orange','yellow','green','cyan','blue','magenta'];

function loop()

{

t = t + 1;

i = i + j;

if (t > 6) { t = 0; }

var r=10+9*Math.sin(2.5*i)*Math.sin(2.5*i);

var x = 7*r*Math.cos(i)+200;

var y = 7*r*Math.sin(i)+200;

context.beginPath();

context.moveTo(200, 200);

context.lineTo(x, y);

context.lineCap = 'round';

context.strokeStyle = 'rgba(50,100,255,0.6)';

context.stroke();

context.beginPath();

context.moveTo(200, 200);

context.arc(x, y, 8, 0, 2 * Math.PI);

context.fillStyle = col[t];

context.fill();

if (i>2*Math.PI)

{

j =-Math.PI/32;

context.clearRect(0, 0, 400, 400);

}

if (i<0)

{

j = Math.PI/32;

context.clearRect(0, 0,400, 400);

}

}

setInterval('loop()',300);

</script>

</body>

</html>

在浏览器中打开包含这段HTML代码的html文件,可以在浏览器窗口中呈现出如图1所示的沿五角星形线摆动的小圆动画效果。

图1  沿五角星形线摆动的小圆

将上面程序中的语句

var r=10+9*Math.sin(2.5*i)*Math.sin(2.5*i);

var x = 7*r*Math.cos(i)+200;

var y = 7*r*Math.sin(i)+200;

改写为:

var e=80*(1+Math.cos(2*i)/4);

var f=e*(1+Math.sin(4*i));

var x=200+f*Math.cos(i);

var y=200-f*Math.sin(i);

就可以在画布中看到如图2所示的沿四瓣花型线摆动的小圆。

图2  沿四瓣花型线摆动的小圆

若改写为:

var r = 200 * Math.pow(Math.cos(i/3),3);

var x = 200 + r * Math.sin(i);

var y = 110 + r * Math.cos(i);

同时修改  if (i>2*Math.PI)  为         if (i>3*Math.PI)

就可以在画布中看到如图3所示的沿苹果形线摆动的小圆。

图3  沿苹果形线摆动的小圆

若改写为:

var r=100*Math.pow(Math.cos(2*i),0.5);

var x = 200 + 160*Math.sin(i)*Math.sin(i)*Math.sin(i);

var y = -(-170+ 10*(13*Math.cos(i)- 5*Math.cos(2*i) - 2*Math.cos(3*i) - Math.cos(4*i)));

就可以在画布中看到如图4所示的沿心形线摆动的小圆。

图4  沿心形线摆动的小圆

有兴趣的读者,可以根据自己感兴趣的曲线的参数方程,适当修改坐标位置(x,y)的计算语句,就可以看到沿指定曲线摆动的小圆的动画效果。

JavaScript动画实例:沿五角星形线摆动的小圆的更多相关文章

  1. JavaScript动画实例:递归分形图动态展示

    在“JavaScript图形实例:SierPinski三角形” 和“JavaScript图形实例:Levy曲线及其变形”等文章中我们介绍了通过递归生成分形图形的方法.我们可以将绘制的分形图形每隔一定的 ...

  2. JavaScript动画实例:李萨如曲线

    在“JavaScript图形实例:阿基米德螺线”和“JavaScript图形实例:曲线方程”中,我们学习了利用曲线的方程绘制曲线的方法.如果想看看曲线是怎样绘制出来的,怎么办呢?编写简单的动画,就可以 ...

  3. JavaScript动画实例:曲线的绘制

    在“JavaScript图形实例:曲线方程”一文中,我们给出了15个曲线方程绘制图形的实例.这些曲线都是根据其曲线方程,在[0,2π]区间取一系列角度值,根据给定角度值计算对应的各点坐标,然后在计算出 ...

  4. JavaScript图形实例:五角星

    1.五角星 在半径为80的圆周上取5个点,用这5个点依次首尾连接画5条线,可以绘制出一个五角星图案. 编写如下的HTML代码. <!DOCTYPE html> <head> & ...

  5. JavaScript动画实例:旋转的圆球

    1.绕椭圆轨道旋转的圆球 在Canvas画布中绘制一个椭圆,然后在椭圆上绘制一个用绿色填充的实心圆.之后每隔0.1秒刷新,重新绘制椭圆和实心圆,重新绘制时,实心圆的圆心坐标发生变化,但圆心坐标仍然位于 ...

  6. JavaScript动画实例:动感小球

    已知圆的坐标方程为: X=R*SIN(θ) Y=R*COS(θ)     (0≤θ≤2π) 将0~2π区间等分48段,即设定间隔dig的值为π/24.θ初始值从0开始,按曲线方程求得坐标值(x,y), ...

  7. JavaScript动画实例:旋转的正三角形

    给定一个正三角形的重心坐标为(x0,y0),高为h,可以用如下的语句绘制一个底边水平的正三角形. ctx.beginPath(); ctx.moveTo(x0,y0-h*2/3); ctx.lineT ...

  8. JavaScript动画实例:炸开的小球

    1.炸开的小球 定义一个小球对象类Ball,它有6个属性:圆心坐标(x,y).小球半径radius.填充颜色color.圆心坐标水平方向的变化量speedX.圆心坐标垂直方向的变化量speedY. B ...

  9. JavaScript动画实例:螺旋线

    数学中有各式各样富含诗意的曲线,螺旋线就是其中比较特别的一类.螺旋线这个名词来源于希腊文,它的原意是“旋卷”或“缠卷”.例如,平面螺旋便是以一个固定点开始向外逐圈旋绕而形成的曲线.在2000多年以前, ...

随机推荐

  1. C语言宏技巧 X宏

    前言 本文介绍下X宏的使用 首先简单介绍下宏的几种用法 #define STRCAT(X,Y) X##Y #define _STR(X) #@X #define STR(X) #X #define L ...

  2. linux kernel update

    linux内核升级 最近HW行动,报出来的linux系统内核漏洞,环境中全部是2.6.32-431.el6.x86_64的主机,需要全部升级到754版本,这也是第一次进行内核升级操作. 先找了一台和生 ...

  3. 面试题40:最小的 k 个数

    import java.util.Arrays; /** * Created by clearbug on 2018/2/26. * * 面试题40:最小的 k 个数 * * 注意:因为前两天在陌陌面 ...

  4. 新一代APM链路监控选型的一个总结重点是skywalking和pinpoint的对比

    链路监控选型的一个比较:1.cat框架:需要对业务代码有较强的侵入性,对代码的侵入性很大,集成成本较高,风险较大:2.zipkin框架:仅支持spring cloud,不支持dubbo,功能及其简单, ...

  5. spring 整合redis集群中使用@autowire无效问题的解决办法

    1.视频参考黑马32期宜立方商城第6课 redis对于的代码 我们先变向一个redis客户端的接口文件 package com.test; public interface JedisClient { ...

  6. Spring IoC 自定义标签解析

    前言 本系列全部基于 Spring 5.2.2.BUILD-SNAPSHOT 版本.因为 Spring 整个体系太过于庞大,所以只会进行关键部分的源码解析. 本篇文章主要介绍 Spring IoC 容 ...

  7. 逻辑式编程语言极简实现(使用C#) - 1. 逻辑式编程语言介绍

    相信很多朋友对于逻辑式编程语言,都有一种最熟悉的陌生人的感觉.一方面,平时在书籍.在资讯网站,偶尔能看到一些吹嘘逻辑式编程的话语.但另一方面,也没见过周围有人真正用到它(除了SQL). 遥记当时看&l ...

  8. 【WPF】DataGrid多表头的样式设计

    需求 在使用WPF开发时,使用DataGrid列表显示数据时,有些字段可以进行分组显示,用于更好的表达它们之间存在的某种关系,因此就考虑到要对DataGrid的表头进行扩展,可以显示多行表头,让这些有 ...

  9. mac下创建安卓应用 hello-world

    教程 https://www.jianshu.com/p/bf77cb5ce70b 需要注意的地方 jdk目录查找 jdk目录拷贝到tool目录下面(jdk可以拷贝,没有其他牵扯) https://w ...

  10. MFC:CImage显示OpenCV:Mat矩阵图像

    *************************************/ //1.读入Mat矩阵(cvMat一样),Mat img=imread("*.*");//cvLoad ...