本文是在windows10上安装了CPU版本的Mindspore,并在mindspore的master分支基础上使用LeNet网络训练MNIST数据集,实践已训练成功,此文为记录过程中的出现问题;
(据说此时mindspore的r0.7版本上是直接执行成功的)

【1】首先使用conda activate mindspore 进入mindspore虚拟环境

【2】再切入mindspore中lenet网络的train.py所在目录 D:\gitee\mindspore\model_zoo\official\cv\lenet

【3】执行训练 python train.py --device-target=CPU (因为代码里默认使用的训练设备为Ascend,需要手动设置 --device_targetCPU

  • 问题一 No module named 'mindspore.dataset.vision’

报错:文件 D:\gitee\mindspore\model_zoo\official\cv\lenet\src\dataset.py 引入模块import mindspore.dataset.version.c_transforms as CV 错误;

原因:查看发现系统 miniconda3的mindspore环境中 在\dataset 和 \version文件夹中还有一层 \transforms


解决:修改dataset.py 文件中模块引用的位置;

import mindspore.dataset.transforms.vision.c_transforms as CV
from mindspore.dataset.transforms.vision import Inter

  

保存文件重新执行命令 python train.py --device-target=CPU

  • 问题二 ImportError: cannot import name ‘set_seed’ from 'mindspore.common’


报错:文件train.py中导入set_seed模块出错

原因: C:\Users\86183\miniconda3\envs\mindspore\Lib\site-packages\mindspore\common\__init__.py 文件中没有set_seed模块(也即common文件下没有set_seed.py文件)

解决:在train.py 中将以下两条语句注释掉

from mindspore.common import set_seed

set_seed(1)

  

保存文件重新执行命令 python train.py --device-target=CPU

  • 问题三 ValueError: The folder ./Data\train does not exist or permission denied!

原因:/Data/train 文件不存在

解决:在D:\gitee\mindspore\model_zoo\official\cv\lenet\ 下新建Data目录,并在Data目录下新建train和test文件夹

重新执行命令 python train.py --device-target=CPU

  • 问题四 RuntimeError: Currently dateset sink mode is not supported when the device target is CPU


原因:数据下沉模式是针对asic芯片做的优化 默认是开启的,CPU不支持这种模式

解决:改为执行命令 python train.py --device_target=CPU --dataset_sink_mode=False

  • 问题五: Unexpected error. There is no valid data matching the dataset API MnistDataset.Please check file path or dataset API validation first.

原因:脚本没有自动下载MNIST数据集,需要自己手动下载

解决:手动下载MNIST数据集MNIST数据集下载地址

MNIST数据目录结构:

t10k-labels-idx1-ubyte.gzt10k-images-idx3-ubyte.gz 解压到 问题三新建的Data/test 目录下
train-labels-idx1-ubyte.gztrain-images-idx3-ubyte.gz 解压到 问题三新建的Data/test 目录下


重新执行python train.py --device_target=CPU --dataset_sink_mode=False

  • 问题六 InferImplBiasAddGrad] BiasAddGrad input y backprop, dim should >= 2, while 1.

解决:在train.py中添加语句 is_grad=False, 变成下面这样

net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean",is_grad=False)

 

再度执行命令 python train.py --device_target=CPU --dataset_sink_mode=False , 训练成功;

【4】验证准确率: python eval.py --ckpt_path="ckpt/checkpoint_lenet-10_1875.ckpt" --device_target=CPU

============== Starting Testing ==============
============== {'Accuracy': 0.9844751602564102} ==============

  

 

Window10 上MindSpore(CPU)用LeNet网络训练MNIST的更多相关文章

  1. 2、TensorFlow训练MNIST

    装载自:http://www.tensorfly.cn/tfdoc/tutorials/mnist_beginners.html TensorFlow训练MNIST 这个教程的目标读者是对机器学习和T ...

  2. MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网络训练实现及比较(三)

    版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 在前两篇文章MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网 ...

  3. 卷积神经网络(CNN)学习算法之----基于LeNet网络的中文验证码识别

    由于公司需要进行了中文验证码的图片识别开发,最近一段时间刚忙完上线,好不容易闲下来就继上篇<基于Windows10 x64+visual Studio2013+Python2.7.12环境下的C ...

  4. 基于LeNet网络的中文验证码识别

    基于LeNet网络的中文验证码识别 由于公司需要进行了中文验证码的图片识别开发,最近一段时间刚忙完上线,好不容易闲下来就继上篇<基于Windows10 x64+visual Studio2013 ...

  5. 卷积网络训练太慢?Yann LeCun:已解决CIFAR-10,目标 ImageNet

    原文连接:http://blog.kaggle.com/2014/12/22/convolutional-nets-and-cifar-10-an-interview-with-yan-lecun/ ...

  6. Pytorch 分割模型构建和训练【直播】2019 年县域农业大脑AI挑战赛---(四)模型构建和网络训练

    对于分割网络,如果当成一个黑箱就是:输入一个3x1024x1024 输出4x1024x1024. 我没有使用二分类,直接使用了四分类. 分类网络使用了SegNet,没有加载预训练模型,参数也是默认初始 ...

  7. 07_利用pytorch的nn工具箱实现LeNet网络

    07_利用pytorch的nn工具箱实现LeNet网络 目录 一.引言 二.定义网络 三.损失函数 四.优化器 五.数据加载和预处理 六.Hub模块简介 七.总结 pytorch完整教程目录:http ...

  8. Raspberry Pi B+ 定时向物联网yeelink上传CPU GPU温度

     Raspberry Pi B+ 定时向物联网yeelink上传CPU GPU温度 硬件平台: Raspberry Pi B+ 软件平台: Raspberry 系统与前期安装请参见:树莓派(Ros ...

  9. LeNet训练MNIST

    jupyter notebook: https://github.com/Penn000/NN/blob/master/notebook/LeNet/LeNet.ipynb LeNet训练MNIST ...

随机推荐

  1. rabbitmq python demo 参考链接地址

    链接地址: https://docs.openstack.org/oslo.messaging/latest/reference/server.html https://www.cnblogs.com ...

  2. ubuntu 下添加环境变量

    ubuntu 下添加环境变量 方法1: 第一种临时设置,用 export 指令,如在$PATH中增加JAVA文件夹: $export PATH=$PATH:/usr/local/lib/jdk1.6. ...

  3. Ubuntu 磁盘满了处理方法。

    Ubuntu 磁盘满了处理方法: 1. 如果是虚拟机安装ubuntu,直接给虚拟机安装ubuntu 系统所在的盘符动态分配一点磁盘容量,就可以了. 2. 如果不是虚拟机安装ubuntu,那么有两个办法 ...

  4. RabbitMQ高级之如何保证消息可靠性?

    人生终将是场单人旅途,孤独之前是迷茫,孤独过后是成长. 楔子 本篇是消息队列RabbitMQ的第四弹. RabbitMQ我已经写了三篇了,基础的收发消息和基础的概念我都已经写了,学任何东西都是这样,先 ...

  5. 设计模式 | Spring中用到的设计模式,你知道几个?

    设计模式无处不在,因为它就来自于我们的日常生活,提炼于生活经验. 正握在你手中的手机,不能用220V的电压直接充电,需要一个专门的电源适配器(充电器)才行.摆在你桌上的电脑也是一样的,都需要" ...

  6. HP Probook 4230s 更换 CPU 过程

    HP Probook 4230s 更换 CPU 过程 原来使用的 CPU 是 i5-2540M 更换为 i7-2760QM    1.松开 硬盘线 硬盘线插头上有一片黑色的胶片,可以用来拔起插头 硬盘 ...

  7. .NET Core3.1 Dotnetty实战第三章

    一.概要 本章主要内容就是讲解如何在dotnetty的框架中进行网络通讯以及编解码对象.数据包分包拆包的相关知识点. 后续会专门开一篇避坑的文章,主要会描述在使用dotnetty的框架时会遇到的哪些问 ...

  8. openCV - 2. 矩阵的掩膜操作

    获取图像像素指针.掩膜操作解释 获取图像像素指针 CV_Assert(myImage.depth() == CV_8U); Mat.ptr<uchar>(int i=0) 获取像素矩阵的指 ...

  9. Node.js调试相关

    如何进行Nodejs性能分析? nodejs性能最重要的两个部分:CPU耗时查看和内存泄漏排查 一,CPU相关 主要思路是两个:借助第三方的工具,以及借助v8自带的性能分析工具 借助第三方的工具 主要 ...

  10. 网络测速神器:SpeedTest深度指南

    最近在测试一个项目,里面涉及到一个测试case:在linux服务器上,当网络带宽较差时,观察服务的消息处理能力和表现.限制网卡带宽有许多方法,比如Wondershaper或者ethtool.那验证限速 ...