loj2509 hnoi2018排列
题意:对于a数组,求它的一个合法排列的最大权值。合法排列:对于任意j,k,如果a[p[j]]=p[k],那么k<j。
权值:sigma(a[p[i]]*i)。n<=50W。
标程:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll read()
{
ll x=,f=;char ch=getchar();
while (ch<''||ch>'') {if (ch=='-') f=-;ch=getchar();}
while (ch>=''&&ch<='') x=(x<<)+(x<<)+ch-'',ch=getchar();
return x*f;
}
const int N=;
vector<ll> vec[N];
ll ans,sum[N],he[N],cnt,head[N],n,a[N],fa[N],w[N],sz[N],cn,vis[N],tail[N],f[N];
int find(int x){return x==f[x]?x:f[x]=find(f[x]);}
struct _node{ll sum,he,sz,id;_node(ll A,ll B,ll C,ll D){sum=A;he=B;sz=C;id=D;}};
struct cmp{
bool operator () (const _node &A,const _node &B)
{return A.he*B.sz>B.he*A.sz||A.he*B.sz==B.he*A.sz&&A.sz<B.sz;}
};
priority_queue<_node,vector<_node>,cmp> q;
int main()
{
n=read();
for (int i=;i<=n;i++) f[i]=i;
for (int i=;i<=n;i++)
{
a[i]=read();
if (<a[i]&&a[i]<=n) vec[a[i]].push_back(i),fa[i]=a[i]; else fa[i]=-;
}
for (int i=;i<=n;i++) w[i]=read(),q.push(_node(sum[i]=w[i],he[i]=w[i],sz[i]=,i));
while (!q.empty())
{
int x=q.top().id,fx=fa[find(x)];q.pop();
if (vis[x]) continue; vis[x]=; //dijkstra的思想,肯定先访问最后一次合并过的点,其他过去版本直接continue,这样就不用再记录一个del的堆。
if (fx==-)
{
ans+=sum[x]+cn*he[x];
for (int i=;i<vec[x].size();i++) fa[vec[x][i]]=-;
cn+=sz[x];
}
else {
if (vis[fx]) return puts("-1"),;
for (int i=;i<vec[x].size();i++) f[vec[x][i]]=find(x);
sum[fx]+=sum[x]+he[x]*sz[fx];he[fx]+=he[x];sz[fx]+=sz[x];
q.push(_node(sum[fx],he[fx],sz[fx],fx));
}
}
printf("%lld\n",ans);
return ;
}
易错点:1.居然碰到了yhx钦定的最难调错误没有之一,记!
return A.he*B.sz>B.he*A.sz||A.he*B.sz==B.he*A.sz&&A.sz<B.sz;
如果不判定相等的情况就不一定取到最后一个。
2.判断无解:vis表示已经被合并/删除的节点,重新连爸爸后爸爸应该是没有被删除的,如果vis[fa]=1,那么必然矛盾。
3.更改父亲的操作如果用vector暴力加,时间复杂度会到O(n^2)。用并查集保存同父亲的点是最快的做法。
题解:堆+并查集+建树+贪心
做法好神。如果a[p[j]]=p[k],那么k<j:也就是说比如a[1]=3,那么在排列中3一定在1前面。对于1<=a[i]<=n的点,连边a[i]->i,表示先取a[i],再取i。那么就形成了一棵树,如果有环必然无解。
这棵树肯定是每次取一个没有父亲的点作为p[i]。基于贪心,i越小,选越小的w[i]更优。
因此我们每次用堆/set维护权值最小的点,如果它没有父亲肯定直接取走,反之和其父亲合并,表示如果取走父亲后接下来肯定就取它。
合并之后,该点的儿子都连边向它父亲,也就是说fa[son[x]]=fa[x],可以用并查集维护。这样这个点的权值用sigma/size来代替。
可以证明:1.比较两个点的sigma/size就相当于比较它们sigma(i*w[p[i]])的权值。
2.对于同一个点,sigma/size随着合并不严格单调减。(设he1/sz1<he2/sz2,那么1向2合并,必然有he2/sz2>(he1+he2)/(sz1+sz2)。化简he2/sz2>(he1+he2)/(sz1+sz2),则he1*sz2<he2*sz1,同假设成立)
时间复杂度O(nlogn+na(n))。
loj2509 hnoi2018排列的更多相关文章
- 【BZOJ5289】[HNOI2018]排列(贪心)
[BZOJ5289][HNOI2018]排列(贪心) 题面 BZOJ 洛谷 题解 这个限制看起来不知道在干什么,其实就是找到所有排列\(p\)中,\(p_k=x\),那么\(k<j\),其中\( ...
- 5289: [Hnoi2018]排列
5289: [Hnoi2018]排列 链接 分析: 首先将题意转化一下:每个点向a[i]连一条边,构成了一个以0为根节点的树,要求选一个拓扑序,点x是拓扑序中的第i个,那么价值是i*w[x].让价值最 ...
- bzoj 5289: [Hnoi2018]排列
Description Solution 首先注意到实际上约束关系构成了一棵树 考虑这个排列 \(p\),编号为 \(a[i]\) 的出现了,\(i\) 才可以出现 那么如果连边 \((a[i],i) ...
- [HNOI2018]排列
Description: 给定 \(n\) 个整数 \(a_1, a_2, \dots, a_n, 0 \le a_i \le n\),以及 \(n\) 个整数 \(w_1, w_2, \dots, ...
- [HNOI2018]排列[堆]
题意 给定一棵树,每个点有点权,第 \(i\) 个点被删除的代价为 \(w_{p[i]}\times i\) ,问最小代价是多少. 分析 与国王游戏一题类似. 容易发现权值最小的点在其父亲选择后就会立 ...
- BZOJ5289: [Hnoi2018]排列
传送门 第一步转化,令 \(q[p[i]]=i\),那么题目变成: 有一些 \(q[a[i]]<q[i]\) 的限制,\(q\) 必须为排列,求 \(max(\sum_{i=1}^{n}w[i] ...
- BZOJ.5289.[AHOI/HNOI2018]排列(贪心 heap)
BZOJ LOJ 洛谷 \(Kelin\)写的挺清楚的... 要求如果\(a_{p_j}=p_k\),\(k\lt j\),可以理解为\(k\)要在\(j\)之前选. 那么对于给定的\(a_j=k\) ...
- 【比赛】HNOI2018 排列
这题原题... 这题题面七绕八绕,有点麻烦,反正最后转化就是一棵树,每个点有一个值,要把所有点选完,要求选择一个点必须是它的父亲和祖先已经全部被选了,贡献是这个点的权值乘上它被选择的排名 如果一个点是 ...
- [BZOJ5289][HNOI2018]排列(拓扑排序+pb_ds)
首先确定将所有a[i]向i连边之后会形成一张图,图上每条有向边i->j表示i要在j之前选. 图上的每个拓扑序都对应一种方案(如果有环显然无解),经过一系列推导可以发现贪心策略与合并的块的大小和w ...
随机推荐
- Nt函数原型
NTSTATUS NTAPI NtAcceptConnectPort( OUT PHANDLE PortHandle, IN PVOID PortIdentifier, IN PPORT_MESSAG ...
- unity Tilemap
瓦片地图 创建 生成 创建一个Tile
- Bootstrap3的响应式缩略图幻灯轮播效果设计
在线演示1 本地下载 HTML <div class="container"> <div class="col-md-12"> &l ...
- Java 并发工具包——ExecutorService常用线程池
1. 执行器服务 ExecutorService java.util.concurrent.ExecutorService 接口表示一个异步执行机制,使我们能够在后台执行任务.因此一个 Executo ...
- 细数Intellij Idea10个蛋疼问题!
Intellij Idea以下简称IJ. 昨天细数了IJ上的10大666的姿势,IJ确实很智能,在很多方便可以完爆Eclipes,可在某些方面真的被Eclipse秒杀 1.乱码 在Eclipse中很少 ...
- 《转》python8元组
转自 http://www.cnblogs.com/BeginMan/p/3156235.html 一.元组特性 1.类似列表,但不可变类型,正因如此,它可以做一个字典的key2.当处理一组对象时,这 ...
- js中不同类型作比较
示例: <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <met ...
- mysql tar安装模式
mysql解压版安装过程,之前安装mysql一直用linux yum和rpm方式.今天试了下tar包方式有点麻烦记录下1.安装lrzsz-0.12.20-27.1.el6.x86_64.rpm方便操作 ...
- Django ORM 之 单表、多表查询
返回ORM目录 Django ORM Django ORM 之一 内容目录: 一.单表查询 二.多表查询 0.准备工作 一些说明: - 表myapp_person的名称是自动生成的,如果你要自定义表名 ...
- redis config
网络上抄袭过来的 然后顺序自己做点笔记 http://chembo.iteye.com/blog/2054021 这里有各个key 详细的描述 # redis 配置文件示例 # 当你需要为某个配置项指 ...