https://download.csdn.net/download/zefan7564/10148990

https://blog.csdn.net/qq_37124237/article/details/81087505

目标检测 Faster R-CNN运行及实时性DEMO测试

2018年07月17日 20:01:59 qq_37124237 阅读数:202
 
  1. #!/usr/bin/env python
  2.  
  3. # --------------------------------------------------------
  4. # Faster R-CNN
  5. # Copyright (c) 2015 Microsoft
  6. # Licensed under The MIT License [see LICENSE for details]
  7. # Written by Ross Girshick
  8. # --------------------------------------------------------
  9.  
  10. """
  11. Demo script showing detections in sample images.
  12.  
  13. See README.md for installation instructions before running.
  14. """
  15.  
  16. import _init_paths
  17. from fast_rcnn.config import cfg
  18. from fast_rcnn.test import im_detect
  19. from fast_rcnn.nms_wrapper import nms
  20. from utils.timer import Timer
  21. import matplotlib.pyplot as plt
  22. import numpy as np
  23. import scipy.io as sio
  24. import caffe, os, sys, cv2
  25. import argparse
  26.  
  27. CLASSES = ('__background__',
  28. 'ship')
  29.  
  30. NETS = {'vgg16': ('VGG16',
  31. 'VGG16_faster_rcnn_final.caffemodel'),
  32. 'zf': ('ZF',
  33. 'ZF_faster_rcnn_final.caffemodel'),
  34. 'wyx': ('wyx','vgg_cnn_m_1024_faster_rcnn_iter_1000.caffemodel')}
  35.  
  36.  
  37. def vis_detections(im, class_name, dets, thresh=0.5):
  38. """Draw detected bounding boxes."""
  39. inds = np.where(dets[:, -1] >= thresh)[0]
  40. if len(inds) == 0:
  41. return
  42.  
  43. im = im[:, :, (2, 1, 0)]
  44. fig, ax = plt.subplots(figsize=(12, 12))
  45. ax.imshow(im, aspect='equal')
  46. for i in inds:
  47. bbox = dets[i, :4]
  48. score = dets[i, -1]
  49.  
  50. ax.add_patch(
  51. plt.Rectangle((bbox[0], bbox[1]),
  52. bbox[2] - bbox[0],
  53. bbox[3] - bbox[1], fill=False,
  54. edgecolor='red', linewidth=3.5)
  55. )
  56. ax.text(bbox[0], bbox[1] - 2,
  57. '{:s} {:.3f}'.format(class_name, score),
  58. bbox=dict(facecolor='blue', alpha=0.5),
  59. fontsize=14, color='white')
  60.  
  61. ax.set_title(('{} detections with '
  62. 'p({} | box) >= {:.1f}').format(class_name, class_name,
  63. thresh),
  64. fontsize=14)
  65. plt.axis('off')
  66. plt.tight_layout()
  67. plt.draw()
  68.  
  69.  
  70. def vis_detections_video(im, class_name, dets, thresh=0.5):
  71. """Draw detected bounding boxes."""
  72. global lastColor,frameRate
  73. inds = np.where(dets[:, -1] >= thresh)[0]
  74. if len(inds) == 0:
  75. return im
  76.  
  77. for i in inds:
  78. bbox = dets[i, :4]
  79. score = dets[i, -1]
  80. cv2.rectangle(im,(bbox[0],bbox[1]),(bbox[2],bbox[3]),(0,0,255),2)
  81. cv2.rectangle(im,(int(bbox[0]),int(bbox[1]-20)),(int(bbox[0]+200),int(bbox[1])),(10,10,10),-1)
  82. cv2.putText(im,'{:s} {:.3f}'.format(class_name, score),(int(bbox[0]),int(bbox[1]-2)),cv2.FONT_HERSHEY_SIMPLEX,.75,(255,255,255))#,cv2.CV_AA)
  83.  
  84. return im
  85.  
  86.  
  87.  
  88. def demo(net, im):
  89. """Detect object classes in an image using pre-computed object proposals."""
  90. global frameRate
  91. # Load the demo image
  92. #im_file = os.path.join(cfg.DATA_DIR, 'demo', image_name)
  93. #im = cv2.imread(im_file)
  94.  
  95. # Detect all object classes and regress object bounds
  96. timer = Timer()
  97. timer.tic()
  98. scores, boxes = im_detect(net, im)
  99. timer.toc()
  100. print ('Detection took {:.3f}s for '
  101. '{:d} object proposals').format(timer.total_time, boxes.shape[0])
  102. frameRate = 1.0/timer.total_time
  103. print "fps: " + str(frameRate)
  104. # Visualize detections for each class
  105. CONF_THRESH = 0.8
  106. NMS_THRESH = 0.3
  107. for cls_ind, cls in enumerate(CLASSES[1:]):
  108. cls_ind += 1 # because we skipped background
  109. cls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)]
  110. cls_scores = scores[:, cls_ind]
  111. dets = np.hstack((cls_boxes,
  112. cls_scores[:, np.newaxis])).astype(np.float32)
  113. keep = nms(dets, NMS_THRESH)
  114. dets = dets[keep, :]
  115. vis_detections_video(im, cls, dets, thresh=CONF_THRESH)
  116. cv2.putText(im,'{:s} {:.2f}'.format("FPS:", frameRate),(1750,50),cv2.FONT_HERSHEY_SIMPLEX,1,(0,0,255))
  117. cv2.imshow(videoFilePath.split('/')[len(videoFilePath.split('/'))-1],im)
  118. cv2.waitKey(20)
  119.  
  120.  
  121. def parse_args():
  122. """Parse input arguments."""
  123. parser = argparse.ArgumentParser(description='Faster R-CNN demo')
  124. parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',
  125. default=0, type=int)
  126. parser.add_argument('--cpu', dest='cpu_mode',
  127. help='Use CPU mode (overrides --gpu)',
  128. action='store_true')
  129. parser.add_argument('--net', dest='demo_net', help='Network to use [vgg16]',
  130. choices=NETS.keys(), default='vgg16')
  131.  
  132. args = parser.parse_args()
  133.  
  134. return args
  135.  
  136.  
  137.  
  138.  
  139. if __name__ == '__main__':
  140. cfg.TEST.HAS_RPN = True # Use RPN for proposals
  141.  
  142. args = parse_args()
  143.  
  144. # prototxt = os.path.join(cfg.MODELS_DIR, NETS[args.demo_net][0],
  145. # 'faster_rcnn_alt_opt', 'faster_rcnn_test.pt')
  146. prototxt = '/home/yexin/py-faster-rcnn/models/pascal_voc/VGG_CNN_M_1024/faster_rcnn_end2end/test.prototxt'
  147. # print 'see prototxt path{}'.format(prototxt)
  148.  
  149.  
  150. # caffemodel = os.path.join(cfg.DATA_DIR, 'faster_rcnn_models',
  151. # NETS[args.demo_net][1])
  152. caffemodel = '/home/yexin/py-faster-rcnn/output/faster_rcnn_end2end/voc_2007_trainval/vgg_cnn_m_1024_faster_rcnn_iter_100.caffemodel'
  153.  
  154.  
  155. # print '\n\nok'
  156.  
  157. if not os.path.isfile(caffemodel):
  158. raise IOError(('{:s} not found.\nDid you run ./data/script/'
  159. 'fetch_faster_rcnn_models.sh?').format(caffemodel))
  160. print '\n\nok'
  161.  
  162. if args.cpu_mode:
  163. caffe.set_mode_cpu()
  164. else:
  165. caffe.set_mode_gpu()
  166. caffe.set_device(args.gpu_id)
  167. cfg.GPU_ID = args.gpu_id
  168. net = caffe.Net(prototxt, caffemodel, caffe.TEST)
  169.  
  170. print '\n\nLoaded network {:s}'.format(caffemodel)
  171.  
  172. # Warmup on a dummy image
  173. im = 128 * np.ones((300, 500, 3), dtype=np.uint8)
  174. for i in xrange(2):
  175. _, _= im_detect(net, im)
  176.  
  177. videoFilePath = '/home/yexin/py-faster-rcnn/data/demo/test_1-3.mp4'
  178. videoCapture = cv2.VideoCapture(videoFilePath)
  179. #success, im = videoCapture.read()
  180. while True :
  181. success, im = videoCapture.read()
  182. demo(net, im)
  183. if cv2.waitKey(10) & 0xFF == ord('q'):
  184. break
  185. videoCapture.release()
  186. cv2.destroyAllWindows()
  187.  

caffe fastercbnnahdemo的更多相关文章

  1. 基于window7+caffe实现图像艺术风格转换style-transfer

    这个是在去年微博里面非常流行的,在git_hub上的代码是https://github.com/fzliu/style-transfer 比如这是梵高的画 这是你自己的照片 然后你想生成这样 怎么实现 ...

  2. caffe的python接口学习(7):绘制loss和accuracy曲线

    使用python接口来运行caffe程序,主要的原因是python非常容易可视化.所以不推荐大家在命令行下面运行python程序.如果非要在命令行下面运行,还不如直接用 c++算了. 推荐使用jupy ...

  3. 基于Caffe的Large Margin Softmax Loss的实现(中)

    小喵的唠叨话:前一篇博客,我们做完了L-Softmax的准备工作.而这一章,我们开始进行前馈的研究. 小喵博客: http://miaoerduo.com 博客原文:  http://www.miao ...

  4. 基于Caffe的Large Margin Softmax Loss的实现(上)

    小喵的唠叨话:在写完上一次的博客之后,已经过去了2个月的时间,小喵在此期间,做了大量的实验工作,最终在使用的DeepID2的方法之后,取得了很不错的结果.这次呢,主要讲述一个比较新的论文中的方法,L- ...

  5. 基于Caffe的DeepID2实现(下)

    小喵的唠叨话:这次的博客,真心累伤了小喵的心.但考虑到知识需要巩固和分享,小喵决定这次把剩下的内容都写完. 小喵的博客:http://www.miaoerduo.com 博客原文: http://ww ...

  6. 基于Caffe的DeepID2实现(中)

    小喵的唠叨话:我们在上一篇博客里面,介绍了Caffe的Data层的编写.有了Data层,下一步则是如何去使用生成好的训练数据.也就是这一篇的内容. 小喵的博客:http://www.miaoerduo ...

  7. 基于Caffe的DeepID2实现(上)

    小喵的唠叨话:小喵最近在做人脸识别的工作,打算将汤晓鸥前辈的DeepID,DeepID2等算法进行实验和复现.DeepID的方法最简单,而DeepID2的实现却略微复杂,并且互联网上也没有比较好的资源 ...

  8. 基于英特尔® 至强™ 处理器 E5 产品家族的多节点分布式内存系统上的 Caffe* 培训

    原文链接 深度神经网络 (DNN) 培训属于计算密集型项目,需要在现代计算平台上花费数日或数周的时间方可完成. 在最近的一篇文章<基于英特尔® 至强™ E5 产品家族的单节点 Caffe 评分和 ...

  9. 基于英特尔® 至强 E5 系列处理器的单节点 Caffe 评分和训练

    原文链接 在互联网搜索引擎和医疗成像等诸多领域,深度神经网络 (DNN) 应用的重要性正在不断提升. Pradeep Dubey 在其博文中概述了英特尔® 架构机器学习愿景. 英特尔正在实现 Prad ...

随机推荐

  1. Unity 脚本中的update,fixedupdate,lateupdate

    先放着 有功儿夫再来整理 https://www.cnblogs.com/fly-100/p/3777731.html https://www.cnblogs.com/hont/p/5184802.h ...

  2. netty权威指南学习笔记二——netty入门应用

    经过了前面的NIO基础知识准备,我们已经对NIO有了较大了解,现在就进入netty的实际应用中来看看吧.重点体会整个过程. 按照权威指南写程序的过程中,发现一些问题:当我们在定义handler继承Ch ...

  3. sass的安装和基础语法

    安装 下载ruby安装包[官网非常慢ruby官网] ruby-2.3.3-x64-mingw32.7z 下载sass sass-3.7.4.gem 方法一: ruby压缩包,解压即可,在bin目录下, ...

  4. go语言开发环境安装及第一个go程序

    下载Go语言开发包 大家可以在Go语言官网(https://golang.google.cn/dl/)下载 Windows 系统下的Go语言开发包,如下图所示. 安装Go语言开发包 双击我们下载好的G ...

  5. java基础源码 (2)--StringBuilder类

    Serializable(接口): 是一个IO的序列化接口,实现了这个接口,就代表这个类可以序列化或者反序列化,该接口没有方法或者字段,仅用于标识可串行话的语义. Appendable(接口): /* ...

  6. Java 第一次课堂测试总结。

    Java 第一次课堂测试总结. 昨天参加了JAVA的开学测试,课上没有完成计算基点的功能,以下是修改完成后的代码.  首先是ScoreInformation类来存储学生信息. //信1805-1 王正 ...

  7. 本地登录ftp的时候报530错误

    root@instance-iyi104bj:~# ftp localhost Connected to localhost. (vsFTPd ) Name (localhost:root): roo ...

  8. 解决CGrIdCtrl合并单元格后继续拆分后的问题

    DWORD dwMergeCellCount = vMergeCells.size(); ; i < dwMergeCellCount; i++){ m_HFlexGrid.SplitCells ...

  9. 2. Jetson TX2--python3下编译安装opencv3.4

    https://cloud.tencent.com/developer/article/1327273 jetpack3.2自带了opencv3.3,但是只提供了python2.7的编译版本,所以也只 ...

  10. iPhone系统固若金汤,为何还有人偷苹果手机去卖?

    2016年初,美国FBI希望苹果开发软件用以解锁一部嫌疑人的iPhone.苹果虽然帮助FBI从疑犯iCloud账户中提取数据,但有些数据仍然不可获取.由于不知道手机密码,FBI也无法打开手机.虽然在最 ...