http://www.lydsy.com/JudgeOnline/problem.php?id=3295 (题目链接)

题意

  给出某种排列,按照某种顺序依次删除m个数,在每次删除一个数前统计序列中逆序对对个数。

Solution

  作为一个CDQ分治的初学者,我毫不犹豫的%了LCF的题解。

  这里介绍下三维偏序的求法:一维排序,二维归并,三维树状数组。

  排序维护x维之后,递归处理:

    1.在处理区间[L,R]的时候,先二分区间[L, (L+R)/ 2],递归求这个左区间(二分的原因是我在维护y维的时候难免破坏x维的性质,但是二分之后我还是可以保证左区间的x全都大于右区间的x)。

    2.这个时候左区间y维已经有序,我们只好把右区间[(L+R)/2,R],快排一遍,进行归并式的dp转移(左区间一个指针,右区间一个指针,保证左区间指针所扫过的y一定小于右区间指针所扫过的y),然后在用常规的树状数组维护z。

    3.当然,最后还应该把右区间[(L+R)/2,R]按x快排回去,并递归处理这一段。

    4.最后归并或者快排维护整个区间的y有序。

  像这种题目,经常把时间作为第三维做三维偏序。

细节

  ?

代码

// bzoj3295
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
#define inf (1ll<<60)
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout)
using namespace std; const int maxn=100010;
int c[maxn],f[maxn],pos[maxn],n,m;
struct data {int x,y,z;}a[maxn],t[maxn]; bool cmp(data a,data b) {
return a.z<b.z;
}
int lowbit(int x) {
return x&-x;
}
void add(int x,int val) {
for (int i=x;i<=n;i+=lowbit(i)) c[i]+=val;
}
LL query(int x) {
int res=0;
for (int i=x;i;i-=lowbit(i)) res+=c[i];
return res;
}
void solve(int l,int r) {
if (l==r) return;
int mid=(l+r)>>1;
solve(l,mid);solve(mid+1,r);
for (int i=l,j=mid+1,k=l;i<=mid || j<=r;) {
if ((j<=r && a[j].x<a[i].x) || i>mid) add(a[j].y,1),t[k++]=a[j++];
else f[a[i].z]+=query(n)-query(a[i].y),t[k++]=a[i++];
}
for (int i=mid+1;i<=r;i++) add(a[i].y,-1);
for (int i=mid,j=r;i>=l || j>=mid+1;) {
if ((j>=mid+1 && a[j].x>a[i].x) || i<l) add(a[j].y,1),j--;
else f[a[i].z]+=query(a[i].y-1),i--;
}
for (int i=mid+1;i<=r;i++) add(a[i].y,-1);
for (int i=l;i<=r;i++) a[i]=t[i];
}
int main() {
scanf("%d%d",&n,&m);
for (int x,i=1;i<=n;i++) scanf("%d",&x),pos[x]=i;
for (int x,i=1;i<=m;i++) scanf("%d",&x),a[pos[x]]=(data){x,pos[x],i};
for (int x=m,i=1;i<=n;i++) if (!a[pos[i]].z) a[pos[i]]=(data){i,pos[i],++x};
sort(a+1,a+1+n,cmp);
solve(1,n);
LL ans=0;
for (int i=1;i<=n;i++) ans+=f[i];
for (int i=1;i<=m;i++) printf("%lld\n",ans),ans-=f[i];
return 0;
}

【bzoj3295】 Cqoi2011—动态逆序对的更多相关文章

  1. bzoj3295 [Cqoi2011]动态逆序对 cdq+树状数组

    [bzoj3295][Cqoi2011]动态逆序对 2014年6月17日4,7954 Description 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数. ...

  2. bzoj3295[Cqoi2011]动态逆序对 树套树

    3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 5987  Solved: 2080[Submit][Sta ...

  3. 2018.07.01 BZOJ3295: [Cqoi2011]动态逆序对(带修主席树)

    3295: [Cqoi2011]动态逆序对 **Time Limit: 10 Sec Memory Limit: 128 MB Description 对于序列A,它的逆序对数定义为满足i<j& ...

  4. [BZOJ3295][Cqoi2011]动态逆序对 CDQ分治&树套树

    3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec  Memory Limit: 128 MB Description 对于序列A,它的逆序对数定义为满足i<j,且 ...

  5. bzoj千题计划146:bzoj3295: [Cqoi2011]动态逆序对

    http://www.lydsy.com/JudgeOnline/problem.php?id=3295 正着删除看做倒着添加 对答案有贡献的数对满足以下3个条件: 出现时间:i<=j 权值大小 ...

  6. BZOJ3295: [Cqoi2011]动态逆序对(树状数组套主席树)

    3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 7465  Solved: 2662[Submit][Sta ...

  7. BZOJ3295 [Cqoi2011]动态逆序对 —— CDQ分治

    题目链接:https://vjudge.net/problem/HYSBZ-3295 3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec  Memory Limit: 1 ...

  8. bzoj3295: [Cqoi2011]动态逆序对(cdq分治+树状数组)

    3295: [Cqoi2011]动态逆序对 题目:传送门 题解: 刚学完cdq分治,想起来之前有一道是树套树的题目可以用cdq分治来做...尝试一波 还是太弱了...想到了要做两次cdq...然后伏地 ...

  9. [bzoj3295][Cqoi2011]动态逆序对_主席树

    动态逆序对 bzoj-3295 Cqoi-2011 题目大意:题目链接. 注释:略. 想法:直接建立主席树. 由于是一个一个删除,所以我们先拿建立好的root[n]的权值线段树先把总逆序对求出来,接着 ...

  10. bzoj3295: [Cqoi2011]动态逆序对(树套树)

    #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...

随机推荐

  1. 两个经典的Oracle触发器示例(轉)

    [案例一] 题目:--触发器:--添加员工信息,流水号作为自动编号(通过序列生成),--并且判断如果工资小于0,则改为0;如果大于10000,则改为10000. CREATE TABLE emp2(e ...

  2. node基础06:回调函数

    1.Node异步编程 Node.js 异步编程的直接体现就是回调. 异步编程依托于回调来实现,但不能说使用了回调后程序就异步化了. 回调函数在完成任务后就会被调用,Node 使用了大量的回调函数,No ...

  3. java:快速文件分割及合并

    文件分割与合并是一个常见需求,比如:上传大文件时,可以先分割成小块,传到服务器后,再进行合并.很多高大上的分布式文件系统(比如:google的GFS.taobao的TFS)里,也是按block为单位, ...

  4. (一)GATT Profile和GAP 简介(目前所有的BLE应用都基于GATT,所以也要了解是怎么一回事)-转发

    个人大总结:(先后顺序) 1.GAP协议定义多个角色(其中就有中心设备[GATT客户端](唯一)叫主设备||和外围设备[GATT服务端端](多个)也叫从设备). 2.先经过GAP协议,再有GATT协议 ...

  5. HTML5 — 让拖放变的流行起来

    先上 Demo,尽量用 chrome,代码可参考 Github. 在 HTML5 出现之前,页面元素的拖放需要监听 mousedown.mouseover 以及 mouseup 等一系列事件,然后改变 ...

  6. SQL基础之数据库快照

    1.认识快照 如名字一样,数据库快照就可以理解为数据库某一时刻的照片,它记录了此时数据库的数据信息.如果要认识快照的本质,那就要了解快照的工作原理.当我们执行t-sql创建快照后,此时就会创建一个或多 ...

  7. [译]用AngularJS构建大型ASP.NET单页应用(三)

    原文地址:http://www.codeproject.com/Articles/808213/Developing-a-Large-Scale-Application-with-a-Single A ...

  8. ModernUI教程:MEF应用向导

    本文主要说明在Modern UI框架下使用MEF的必要步骤,关于MEF请自行脑补. MEF-INTO-MUI实例代码下载: MefMuiApp.zip 1:创建一个导出属性 ModernFrame用来 ...

  9. 同态加密-Homomorphic encryption

    同态加密(Homomorphic encryption)是一种加密形式,它允许人们对密文进行特定的代数运算得到仍然是加密的结果,将其解密所得到的结果与对明文进行同样的运算结果一样.换言之,这项技术令人 ...

  10. Ubuntu Terminal Shortcut

    Not all of the shortcuts are useful.Only remeber the most useful. 移动类Ctrl + a  - Jump to the start o ...