http://acm.hust.edu.cn/vjudge/contest/view.action?cid=109329#problem/B    全题在文末。

题意:在a,b中(a,b<=n)(1 ≤ n ≤ 1014),有多少组(a,b)  (a<b)满足lcm(a,b)==n;

先来看个知识点:

素因子分解:n = p1 ^ e1 * p2 ^ e2 *..........*pn ^ en

for i in range(1,n):

ei 从0取到ei的所有组合

必能包含所有n的因子。

现在取n的两个因子a,b

a=p1 ^ a1 * p2 ^ a2 *..........*pn ^ an

b=p1 ^ b1 * p2 ^ b2 *..........*pn ^ bn

gcd(a,b)=p1 ^ min(a1,b1) * p2 ^ min(a2,b2) *..........*pn ^ min(an,bn)

lcm(a,b)=p1 ^ max(a1,b1) * p2 ^ max(a2,b2) *..........*pn ^ max(an,bn)

哈哈,又多了种求gcd,lcm的方法。

题解:

先对n素因子分解,n = p1 ^ e1 * p2 ^ e2 *..........*pk ^ ek,

lcm(a,b)=p1 ^ max(a1,b1) * p2 ^ max(a2,b2) *..........*pk ^ max(ak,bk)

所以,当lcm(a,b)==n时,max(a1,b1)==e1,max(a2,b2)==e2,…max(ak,bk)==ek

当ai == ei时,bi可取 [0, ei] 中的所有数  有 ei+1 种情况,bi==ei时同理。

那么就有2(ei+1)种取法,但是当ai = bi = ei 时有重复,所以取法数为2(ei+1)-1=2*ei+1。
除了 (n, n) 所有的情况都出现了两次  那么满足a<=b的有 (2*ei + 1)) / 2 + 1

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long LL;
const int N=1e7+5;
const int NN=1e6;
unsigned int prime[NN],cnt; //prime[N]会MLE
bool vis[N]; void is_prime()
{
cnt=0;
memset(vis,0,sizeof(vis));
for(int i=2;i<N;i++)
{
if(!vis[i])
{
prime[cnt++]=i;
for(int j=i+i;j<N;j+=i)
{
vis[j]=1;
}
}
}
} int main()
{
is_prime();
int t;
cin>>t;
for(int kase=1;kase<=t;kase++)
{
LL n;
cin>>n;
int ans=1;
for(int i=0;i<cnt&&prime[i]*prime[i]<=n;i++)
{
if(n%prime[i]==0)
{
int e=0;
while(n%prime[i]==0)
{
n/=prime[i];
e++;
}
ans*=(2*e+1);
}
}
if(n>1)
ans*=(2*1+1);
printf("Case %d: %d\n",kase,(ans+1)/2);
}
}

题目:

B - Pairs Forming LCM

Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu

Submit Status

Description

Find the result of the following code:

long long pairsFormLCM( int n ) {
long long res = 0;
for( int i = 1; i <= n; i++ )
for( int j = i; j <= n; j++ )
if( lcm(i, j) == n ) res++; // lcm means least common multiple
return res;
}

A straight forward implementation of the code may time out. If you analyze the code, you will find that the code actually counts the number of pairs(i, j) for which lcm(i, j) = n and (i ≤ j).

Input

Input starts with an integer T (≤ 200), denoting the number of test cases.

Each case starts with a line containing an integer n (1 ≤ n ≤ 1014).

Output

For each case, print the case number and the value returned by the function 'pairsFormLCM(n)'.

Sample Input

15

2

3

4

6

8

10

12

15

18

20

21

24

25

27

29

Sample Output

Case 1: 2

Case 2: 2

Case 3: 3

Case 4: 5

Case 5: 4

Case 6: 5

Case 7: 8

Case 8: 5

Case 9: 8

Case 10: 8

Case 11: 5

Case 12: 11

Case 13: 3

Case 14: 4

Case 15: 2

Pairs Forming LCM(素因子分解)的更多相关文章

  1. LightOJ 1236 - Pairs Forming LCM(素因子分解)

    B - Pairs Forming LCM Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu ...

  2. Pairs Forming LCM

    题目: B - Pairs Forming LCM Time Limit:2000MS     Memory Limit:32768KB Description Find the result of ...

  3. 1236 - Pairs Forming LCM

    1236 - Pairs Forming LCM   Find the result of the following code: long long pairsFormLCM( int n ) {  ...

  4. LightOJ 1236 Pairs Forming LCM (LCM 唯一分解定理 + 素数筛选)

    http://lightoj.com/volume_showproblem.php?problem=1236 Pairs Forming LCM Time Limit:2000MS     Memor ...

  5. Pairs Forming LCM (LCM+ 唯一分解定理)题解

    Pairs Forming LCM Find the result of the following code: ; i <= n; i++ )        for( int j = i; j ...

  6. Pairs Forming LCM (LightOJ - 1236)【简单数论】【质因数分解】【算术基本定理】(未完成)

    Pairs Forming LCM (LightOJ - 1236)[简单数论][质因数分解][算术基本定理](未完成) 标签: 入门讲座题解 数论 题目描述 Find the result of t ...

  7. Pairs Forming LCM LightOJ - 1236 素因子分解

    Find the result of the following code: long long pairsFormLCM( int n ) {    long long res = 0;    fo ...

  8. Pairs Forming LCM 在a,b中(a,b<=n)(1 ≤ n ≤ 10^14),有多少组(a,b) (a<b)满足lcm(a,b)==n; lcm(a,b)=p1 ^ max(a1,b1) * p2 ^ max(a2,b2) *..........*pn ^ max(an,bn)

    转自:http://www.cnblogs.com/shentr/p/5285407.html http://acm.hust.edu.cn/vjudge/contest/view.action?ci ...

  9. LightOJ - 1236 - Pairs Forming LCM(唯一分解定理)

    链接: https://vjudge.net/problem/LightOJ-1236 题意: Find the result of the following code: long long pai ...

随机推荐

  1. Number()、parseInt() 和 parseFloat() 的区别

    一:Number() 如果是Boolean值,true和false值将分别被转换为1和0. 如果是数字值,只是简单的传入和返回. 如果是null值,返回0. 如果是undefined,返回NaN. 如 ...

  2. 【iScroll源码学习02】分解iScroll三个核心事件点

    前言 最近两天看到很多的总结性发言,我想想今年好像我的变化挺大的,是不是该晚上来水一发呢?嗯,决定了,晚上来水一发! 上周六,我们简单模拟了下iScroll的实现,周日我们开始了学习iScroll的源 ...

  3. HTML滚动字幕代码参数详解及Js间隔滚动代码

    html文字滚动代码 <marquee style="WIDTH: 388px; HEIGHT: 200px" scrollamount="2" dire ...

  4. 在ArcGIS中如何进行POI点抽稀

    对POI点添加权重等级类型信息.例如添加短整形字段Weight,并根据业务逻辑设置不同种类的POI的权重值,如分5类,0代表重要性最低的POI,4代表重要性最高. 在ArcMap的标注管理栏中,设置使 ...

  5. 微信公众号里打开链接下载APP

    嵌入这样的代码 <a href="http://a.app.qq.com/o/simple.jsp?pkgname=com.violationquery" target=&q ...

  6. git 新建服务器的版本以及项目的用户

    一, git客户端账号生成 1. git的客户端的公钥生成 ssh-keygen -t rsa -C "test@gmail.com" mac机器会在 /Users/用户/.ssh ...

  7. Android 视频播放器,在线播放

    1. Bilibili https://github.com/Bilibili/ijkplayer 1.测试的时候总是崩溃,不知道是我不会用还是怎么回事. 2016-04-15 2.AndroidVi ...

  8. 【Android】不依赖焦点和选中的TextView跑马灯【2】

    前言 之前有写一篇TextView跑马灯的效果,后来实际项目中有发现新的问题,比如还是无法自动跑,文本超过了显示区域就截取的问题,今天换了一种思路来实现,更简单更好用. 声明 欢迎转载,但请保留文章原 ...

  9. win10_x64更新错误解决: 安装一些更新时出现问题,但我们稍后会重试。如果持续出现这些问题,并且你想要搜索Web或联系支持人员以获取相关信息,以下信息可能会对你有帮助:

    可能的原因: 1.windows 服务没打开 win+r,打开[运行]对话框 输入 [service.msc] 找到 [Windows Firewall]和[Internet connection s ...

  10. WPF学习之路(九)导航链接

    Hyperlink WPF中超链接类型是Hyperlink,除了能在页面之间导航,还能再同一个页面下进行段落导航 实例: <Grid> <FlowDocumentReader> ...