\(\mathcal{Description}\)

  Link & 双倍经验.

  给定 \(n\) 个区间 \([a_i,b_i)\)(注意原题是闭区间,这里只为方便后文描述),求 \(\{c_n\}\) 的个数,使得:

  • \(\forall i~~~~c_i=0\lor c_i\in[a_i,b_i)\)。
  • \(\forall i<j~~~~c_i\not=0\land c_j\not=0\Rightarrow c_i<c_j\)。

  对 \(10^9+7\) 取模。

  \(n\le500\),\(1\le a_i\le b_i\le10^9\)。

\(\mathcal{Solution}\)

  一个很 naive 的 DP 想法,\(f(i,j)\) 表示考虑前 \(i\) 个位置,\(c_i=j~(j\not=0)\) 时的方案数。问题在于第二维开销过大,考虑离散化所有端点坐标。

  先来一个引理,取值在 \([a,b)\),长度为 \(n\) 的上升整数序列的个数为 \(\binom{b-a}{n}\),显然选 \(n\) 个数就可以了。

  再来一个引理,取值在 \([a,b)\cup\{0\}\),长度为 \(n\),非零的位置是上升整数序列的序列个数为 \(\binom{b-a+n}{n}\),证明也很显然,有几个 \(0\) 可以选,虽然不同的 \(0\) 可以任意排列,但看上去都是一样的。所以钦定 \(0\) 的大小关系后就等价于令区间为 \([a-n,b]\),长度为 \(n\) 时的上一引理。

  接着刚才的思路,离散化时,排过序的端点们把坐标轴分为若左闭右开的区间,从左开始第 \(t\) 个区间称作第 \(t\) 段。令 \(f(i,j)\) 表示考虑前 \(i\) 个位置,\(c_i\) 属于前 \(j\) 段时的方案数。设 \([j,j+1)\) 实际映射 \([a,b)\),枚举 \(k<i\),转移:

\[f(i,j)\leftarrow f(i,j)+f(k,j-1)\binom{b-a+x-1}{x},~~~~\text{where }x=1+\sum_{t=k+1}^{j-1}[j\in[a_t,b_t)]
\]

  组合数运用了引理二。注意钦定 \(c_i\) 不为 \(0\),所以上面 \(-1\)。

  扫 \(f\) 就结束了,交换枚举顺序,第二维还可以滚掉。复杂度 \(\mathcal O(n^3)\)。

\(\mathcal{Code}\)

/* Clearink */

#include <cstdio>
#include <algorithm> const int MAXN = 500, MOD = 1e9 + 7;
int n, a[MAXN + 5], b[MAXN + 5], tmp[MAXN * 2 + 5], inv[MAXN + 5];
int f[MAXN + 5], comb[MAXN + 5]; inline int mul ( long long a, const int b ) { return a * b % MOD; }
inline int& addeq ( int& a, const int b ) { return ( a += b ) < MOD ? a : a -= MOD; } int main () {
scanf ( "%d", &n ), inv[1] = 1;
for ( int i = 1; i <= n; ++ i ) {
if ( i > 1 ) inv[i] = mul ( MOD - MOD / i, inv[MOD % i] );
scanf ( "%d %d", &a[i], &b[i] ), ++ b[i];
tmp[2 * i - 1] = a[i], tmp[i << 1] = b[i];
}
std::sort ( tmp + 1, tmp + ( n << 1 | 1 ) );
int m = std::unique ( tmp + 1, tmp + ( n << 1 | 1 ) ) - tmp - 1;
for ( int i = 1; i <= n; ++ i ) {
a[i] = std::lower_bound ( tmp + 1, tmp + m + 1, a[i] ) - tmp;
b[i] = std::lower_bound ( tmp + 1, tmp + m + 1, b[i] ) - tmp;
}
f[0] = 1;
for ( int j = 1, len; j < m; ++ j ) {
len = tmp[j + 1] - tmp[j], comb[0] = 1;
for ( int i = 1; i <= n; ++ i ) {
comb[i] = mul ( mul ( comb[i - 1], len + i - 1 ), inv[i] );
}
for ( int i = n; i; -- i ) {
if ( j < a[i] || b[i] <= j ) continue;
for ( int k = i - 1, c = 1; ~k; -- k ) {
addeq ( f[i], mul ( comb[c], f[k] ) );
if ( a[k] <= j && j < b[k] ) ++ c;
}
}
}
int ans = 0;
for ( int i = 1; i <= n; ++ i ) addeq ( ans, f[i] );
printf ( "%d\n", ans );
return 0;
}

\(\mathcal{Details}\)

  目前洛谷最优解,兔的代码吸口氧真的快到飞起 www。

Solution -「APIO 2016」「洛谷 P3643」划艇的更多相关文章

  1. [洛谷P3643] [APIO2016]划艇

    洛谷题目链接:[APIO2016]划艇 题目描述 在首尔城中,汉江横贯东西.在汉江的北岸,从西向东星星点点地分布着 \(N\) 个划艇学校,编号依次为 \(1\) 到 \(N\).每个学校都拥有若干艘 ...

  2. 洛谷P3643 [APIO2016]划艇(组合数学)

    题面 传送门 题解 首先区间个数很少,我们考虑把所有区间离散化(这里要把所有的右端点变为\(B_i+1\)代表的开区间) 设\(f_{i,j}\)表示考虑到第\(i\)个学校且第\(i\)个学校必选, ...

  3. 洛谷 P3643 - [APIO2016]划艇(dp)

    题面传送门 一道难度中等的 \(dp\)(虽然我没有想出来/kk). 首先一眼 \(dp_{i,j}\) 表示考虑到第 \(i\) 个学校,第 \(i\) 个学校派出了 \(j\) 个划艇的方案数,转 ...

  4. 「区间DP」「洛谷P1043」数字游戏

    「洛谷P1043」数字游戏 日后再写 代码 /*#!/bin/sh dir=$GEDIT_CURRENT_DOCUMENT_DIR name=$GEDIT_CURRENT_DOCUMENT_NAME ...

  5. Solution -「JSOI 2019」「洛谷 P5334」节日庆典

    \(\mathscr{Description}\)   Link.   给定字符串 \(S\),求 \(S\) 的每个前缀的最小表示法起始下标(若有多个,取最小的).   \(|S|\le3\time ...

  6. Solution -「洛谷 P4372」Out of Sorts P

    \(\mathcal{Description}\)   OurOJ & 洛谷 P4372(几乎一致)   设计一个排序算法,设现在对 \(\{a_n\}\) 中 \([l,r]\) 内的元素排 ...

  7. Solution -「POI 2010」「洛谷 P3511」MOS-Bridges

    \(\mathcal{Description}\)   Link.(洛谷上这翻译真的一言难尽呐.   给定一个 \(n\) 个点 \(m\) 条边的无向图,一条边 \((u,v,a,b)\) 表示从 ...

  8. 「洛谷4197」「BZOJ3545」peak【线段树合并】

    题目链接 [洛谷] [BZOJ]没有权限号嘤嘤嘤.题号:3545 题解 窝不会克鲁斯卡尔重构树怎么办??? 可以离线乱搞. 我们将所有的操作全都存下来. 为了解决小于等于\(x\)的操作,那么我们按照 ...

  9. 「洛谷3338」「ZJOI2014」力【FFT】

    题目链接 [BZOJ] [洛谷] 题解 首先我们需要对这个式子进行化简,否则对着这么大一坨东西只能暴力... \[F_i=\sum_{j<i} \frac{q_iq_j}{(i-j)^2}-\s ...

随机推荐

  1. centos 目录结构

    bin -----存放命令的目录(bin目录是快捷方式)是/usr/bin的快捷方式 sbin ----只有root用户才能使用的命令 etc ----系统服务的配置文件 /usr/local --- ...

  2. nuxt 项目安装及环境配置

    babel篇 在package.json中添加--exec babel-node 如果需要编译es6,我们需要设置presets包含es2015,也就是预先加载es6编译的模块. 如果需要编译es7, ...

  3. Mybatis实现分包定义数据库

    Mybatis实现分包定义数据库 背景 业务需求中需要连接两个数据库处理数据,需要用动态数据源.通过了解mybatis的框架,计划 使用分包的方式进行数据源的区分. 原理 前提: 我们使用mybati ...

  4. 腾讯 TKE 厉害了!用 eBPF绕过 conntrack 优化K8s Service,性能提升40%

    Kubernetes Service[1] 用于实现集群中业务之间的互相调用和负载均衡,目前社区的实现主要有userspace,iptables和IPVS三种模式.IPVS模式的性能最好,但依然有优化 ...

  5. 干掉 Postman?测试接口直接生成API文档,ApiPost真香!

    实不相瞒我的收藏夹里躺着很多优质的开发工具,我有个爱好平时遇到感兴趣的开发工具都会记录下来,然后有时间在慢慢研究.前几天刚给同事分享一款非常好用的API文档工具,真的被惊艳到了,粉丝朋友们也感受一下吧 ...

  6. 【记录一个问题】thanos receiver的日志中出现错误:conflict

    完整的错误如下: level=debug ts=2021-08-16T09:07:43.412451Z caller=handler.go:355 component=receive componen ...

  7. 华为matebook x pro监听耳机电流声

    问题 左耳出现电流声,播放声音就电流声,关闭声音10s后才消失 设备 matebook x pro2018 hd206耳机 原因 matebook设计缺陷充电电流声大,毕竟早期type C快充,监听耳 ...

  8. golang中的标准库flag

    Go语言内置的flag包实现了命令行参数的解析,flag包使得开发命令行工具更为简单. os.Args 如果你只是简单的想要获取命令行参数,可以像下面的代码示例一样使用os.Args来获取命令行参数. ...

  9. BUGKU-Misc 成果狗成果狗

    下载下来可以得到一张图片 成果真好看 放到kali里面用binwalk查看有没有隐藏文件,发现这里面有两张图片 然后可以拖到winhex或者010里面把两张图片分离出来,可以分离出1.jpg和54.j ...

  10. MySQL 5.7主从搭建(同一台机器)

    主从复制原理:复制是 MySQL 的一项功能,允许服务器将更改从一个实例复制到另一个实例. 1)主服务器将所有数据和结构更改记录到二进制日志中. 2)从属服务器从主服务器请求该二进制日志并在本地应用其 ...