1059: [ZJOI2007]矩阵游戏

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 6266  Solved: 3065
[Submit][Status][Discuss]

Description

  小Q是一个非常聪明的孩子,除了国际象棋,他还很喜欢玩一个电脑益智游戏——矩阵游戏。矩阵游戏在一个N
*N黑白方阵进行(如同国际象棋一般,只是颜色是随意的)。每次可以对该矩阵进行两种操作:行交换操作:选择
矩阵的任意两行,交换这两行(即交换对应格子的颜色)列交换操作:选择矩阵的任意行列,交换这两列(即交换
对应格子的颜色)游戏的目标,即通过若干次操作,使得方阵的主对角线(左上角到右下角的连线)上的格子均为黑
色。对于某些关卡,小Q百思不得其解,以致他开始怀疑这些关卡是不是根本就是无解的!!于是小Q决定写一个程
序来判断这些关卡是否有解。

Input

  第一行包含一个整数T,表示数据的组数。接下来包含T组数据,每组数据第一行为一个整数N,表示方阵的大
小;接下来N行为一个N*N的01矩阵(0表示白色,1表示黑色)。

Output

  输出文件应包含T行。对于每一组数据,如果该关卡有解,输出一行Yes;否则输出一行No。

Sample Input

2
2
0 0
0 1
3
0 0 1
0 1 0
1 0 0

Sample Output

No
Yes
【数据规模】
对于100%的数据,N ≤ 200
 
 
 
解析:
  输入的时候遇到1 就把这一行和这个1所在列号对应的行号连边 不过不能是原行号 要 + n
  二分图的思想 就是原行号与s相连 n + 原行号与t相连 容量都为1
  然后跑一遍dinic 如果最大流 == n 则 Yes 否则No
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define pd(a) printf("%d\n", a);
#define plld(a) printf("%lld\n", a);
#define pc(a) printf("%c\n", a);
#define ps(a) printf("%s\n", a);
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff, LL_INF = 0x7fffffffffffffff;
int head[maxn], cur[maxn], d[maxn], vis[maxn];
int n, m, s, t, cnt; struct node
{
int u, v, c, next;
}Node[maxn << ]; void add_(int u, int v, int c)
{
Node[cnt].u = u;
Node[cnt].v = v;
Node[cnt].c = c;
Node[cnt].next = head[u];
head[u] = cnt++;
} void add(int u, int v, int w)
{
add_(u, v, w);
add_(v, u, );
} bool bfs()
{
queue<int> Q;
mem(d, );
Q.push(s);
d[s] = ;
while(!Q.empty())
{
int u = Q.front(); Q.pop();
for(int i = head[u]; i != -; i = Node[i].next)
{
node e = Node[i];
if(!d[e.v] && e.c > )
{
d[e.v] = d[u] + ;
Q.push(e.v);
if(e.v == t) return ;
}
}
}
return d[t] != ;
} int dfs(int u, int cap)
{
int ret = ;
if(u == t || cap == )
return cap;
for(int &i = cur[u]; i != -; i = Node[i].next)
{
node e = Node[i];
if(d[e.v] == d[e.u] + && e.c > )
{
int V = dfs(e.v, min(cap, e.c));
Node[i].c -= V;
Node[i^].c += V;
ret += V;
cap -= V;
if(cap == ) break;
}
}
if(cap > ) d[u] = -;
return ret;
} int Dinic(int u)
{
int ans = ;
while(bfs())
{
// cout << 111 << endl;
memcpy(cur, head, sizeof(head));
ans += dfs(u, INF);
}
return ans;
} void init()
{
mem(head, -);
cnt = ;
}
char str[maxn];
int main()
{ int T;
cin >> T;
while(T--)
{
init();
int x;
cin >> n;
s = , t = * n + ;
for(int i = ; i <= n; i++)
{
for(int j = ; j <= n; j++)
{
rd(x);
if(x == )
{
add(i, n + j, );
}
}
add(s, i, );
}
for(int i = ; i <= n; i++)
add(n + i, t, );
if(Dinic(s) == n)
cout << "Yes" << endl;
else
cout << "No" << endl;
}
return ;
}

1059: [ZJOI2007]矩阵游戏

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 6266  Solved: 3065
[Submit][Status][Discuss]

Description

  小Q是一个非常聪明的孩子,除了国际象棋,他还很喜欢玩一个电脑益智游戏——矩阵游戏。矩阵游戏在一个N
*N黑白方阵进行(如同国际象棋一般,只是颜色是随意的)。每次可以对该矩阵进行两种操作:行交换操作:选择
矩阵的任意两行,交换这两行(即交换对应格子的颜色)列交换操作:选择矩阵的任意行列,交换这两列(即交换
对应格子的颜色)游戏的目标,即通过若干次操作,使得方阵的主对角线(左上角到右下角的连线)上的格子均为黑
色。对于某些关卡,小Q百思不得其解,以致他开始怀疑这些关卡是不是根本就是无解的!!于是小Q决定写一个程
序来判断这些关卡是否有解。

Input

  第一行包含一个整数T,表示数据的组数。接下来包含T组数据,每组数据第一行为一个整数N,表示方阵的大
小;接下来N行为一个N*N的01矩阵(0表示白色,1表示黑色)。

Output

  输出文件应包含T行。对于每一组数据,如果该关卡有解,输出一行Yes;否则输出一行No。

Sample Input

2
2
0 0
0 1
3
0 0 1
0 1 0
1 0 0

Sample Output

No
Yes
【数据规模】
对于100%的数据,N ≤ 200

矩阵游戏 HYSBZ - 1059(最大流)的更多相关文章

  1. 1059: [ZJOI2007]矩阵游戏

    1059: [ZJOI2007]矩阵游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2154  Solved: 1053[Submit][Stat ...

  2. 【BZOJ】1059: [ZJOI2007]矩阵游戏(二分图匹配)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1059 本题可以看出,无论怎样变化,在同一行和同一列的数永远都不会分手---还是吐槽,,我第一眼yy了 ...

  3. 【BZOJ】【1059】【ZJOI2007】矩阵游戏

    二分图完美匹配/匈牙利算法 如果a[i][j]为黑点,我们就连边 i->j ,然后跑二分图最大匹配,看是否有完美匹配. <_<我们先考虑行变换:对于第 i 行,如果它第 j 位是黑点 ...

  4. bzoj 1059: [ZJOI2007]矩阵游戏 二分图匹配

    1059: [ZJOI2007]矩阵游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1891  Solved: 919[Submit][Statu ...

  5. BZOJ 1059 矩阵游戏

    Description 小Q是一个非常聪明的孩子,除了国际象棋,他还很喜欢玩一个电脑益智游戏--矩阵游戏.矩阵游戏在一个\(N \times N\)黑白方阵进行(如同国际象棋一般,只是颜色是随意的). ...

  6. BZOJ 1059 [ZJOI2007]矩阵游戏

    1059: [ZJOI2007]矩阵游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2707  Solved: 1322[Submit][Stat ...

  7. bzoj 1059 [ZJOI2007]矩阵游戏(完美匹配)

    1059: [ZJOI2007]矩阵游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2993  Solved: 1451[Submit][Stat ...

  8. BZOJ 1059: [ZJOI2007]矩阵游戏( 匈牙利 )

    只要存在N个x, y坐标均不相同的黑格, 那么就一定有解. 二分图匹配, 假如最大匹配=N就是有解的, 否则无解 ------------------------------------------- ...

  9. BZOJ 1059 [ZJOI2007]矩阵游戏 (二分图最大匹配)

    1059: [ZJOI2007]矩阵游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 5281  Solved: 2530[Submit][Stat ...

随机推荐

  1. 记住left join最简单的方式(转)

    表aaid adate1    a12    a23    a3表bbid bdate1    b12    b24    b4 select * from a left join b on a.ai ...

  2. 浅谈传感器常用Delta-SigmaADC

    过采样ADC,或噪声整形ADC,也叫Delta-Sigma ADC.名字很多,基本上都由求差电路,积分求和电路组成调制器,后续由数字滤波器获得Nbit数字输出.不管怎样,数学上的除法能够让你理解这类A ...

  3. ssl协议

    在互联网安全通信方式上,目前用的最多的就是https配合ssl和数字证书来保证传输和认证安全了.本文追本溯源围绕这个模式谈一谈. 1.首先解释一下上面的几个名词: https:在http(超文本传输协 ...

  4. linux中yum与rpm区别

    一.源代码形式 1.      绝大多数开源软件都是直接以原码形式发布的 2.      源代码一般会被打成.tar.gz的归档压缩文件 3.      源代码需要编译成为二进制形式之后才能够运行使用 ...

  5. ActiveMQ在C#中的应用

    本文是在.NET Framework框架下的应用,截止到目前ActiveMQ还不支持.NET Core,而RabbitMQ已经支持.NET Core,希望ActiveMQ能尽快支持. ActiveMQ ...

  6. vue-cli 3.0 路由懒加载

    当打包构建应用时,Javascript 包会变得非常大,影响页面加载.如果我们能把不同路由对应的组件分割成不同的代码块,然后当路由被访问的时候才加载对应组件,这样就更加高效了. 1. 安装 synta ...

  7. .NetCore实践篇:分布式监控Zipkin持久化之殇

    前言 本系列已写了四篇文章,读本篇之前,可以先读前面几篇. 思考大纲:.Net架构篇:思考如何设计一款实用的分布式监控系统? 实践篇一:.NetCore实践篇:分布式监控客户端ZipkinTracer ...

  8. 过渡与动画 - 缓动效果&基于贝塞尔曲线的调速函数

    难题 给过渡和动画加上缓动效果是一种常见的手法(比如具有回弹效果的过渡过程)是一种流行的表现手法,可以让界面显得更加生动和真实:在现实世界中,物体A点到B点往往也是不完全匀速的 以纯技术的角度来看,回 ...

  9. ABP+AdminLTE+Bootstrap Table权限管理系统第三节--abp分层体系,实体相关及ABP模块系统

    返回总目录:ABP+AdminLTE+Bootstrap Table权限管理系统一期 ABP模块系统 说了这么久,还没有详细说到abp框架,abp其实基于DDD(领域驱动设计)原则的细看分层如下: 再 ...

  10. .net 2.0 使用linq

    .net 2.0 使用linq,主要是使用Linq to Object,没有测试Linq to XML. 方法: 新建一个net2.0的程序,然后添加对System.Core.Dll的引用.引用时vs ...