LOJ #2721. 「NOI2018」屠龙勇士(set + exgcd)
题意
LOJ #2721. 「NOI2018」屠龙勇士
题解
首先假设每条龙都可以打死,每次拿到的剑攻击力为 \(ATK\) 。
这个需要支持每次插入一个数,查找比一个 \(\le\) 数最大的数(或者找到 \(>\) 一个数的最小数),删除一个数。
这个东西显然是可以用 std :: multiset<long long> 来处理的(手写权值线段树或者平衡树也行)。
对于每一条龙我们只能刚好一次秒杀,并且要恰好算血量最后为 \(0\)(一波带走)。
然后就转化成求很多个方程:
x \times ATK_1 \equiv a_1 \pmod {p_1} \\
~~~~~~~~~~~~~~~~~~~~~ \vdots \\
x \times ATK_n \equiv a_n \pmod {p_n} \\
\end{cases}
\]
求最小正整数解 \(x\) 满足这些所有方程。
如果把 \(ATK_i\) 除到右边去,也就是
\]
就转化成求模线性方程组的最小整数解了,可以参考 我的数论总结 ,但是那个板子有个地方需要 慢速乘 。
这个需要用 \(exgcd\) 计算逆元,如果没有逆元那么对于这个方程是无解的。
但是这个有点特殊情况,也就是 \(\gcd(ATK_i, a_i, p_i) > 1\) 的时候,需要约去 \(gcd\) 。
比如 \(2x \equiv 8 \pmod {36}\) 的时候,显然 \(x = 4\) 是其中的一个解,但 \(2\) 对于 \(36\) 没有逆元。
但将方程转化后 \(x \equiv 4 \pmod {18}\) 就是等价于原来方程的另一个可行方程。
然后如果这个方程仍然没有逆元的话就是真的无解了。如果合并方程组中无解那也是无解。
还有一个地方对于 \(p_i = 1\) 的情况,解出来是 \(x \equiv 0 \pmod {1}\) 。这个需要给答案有一个下界 \(a_i\) ,最后要一直加上 \(lcm\) 使得它不小于这个下界。
然后各种地方注意会爆 long long ,慢速乘就好了。(挂了 \(15pts\) 。。)
代码
#include <bits/stdc++.h>
#define For(i, l, r) for(register int i = (l), i##end = (int)(r); i <= i##end; ++i)
#define Fordown(i, r, l) for(register int i = (r), i##end = (int)(l); i >= i##end; --i)
#define Set(a, v) memset(a, v, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(a))
#define debug(x) cout << #x << ": " << x << endl
#define DEBUG(...) fprintf(stderr, __VA_ARGS__)
using namespace std;
typedef long long ll;
inline ll read() {
ll x = 0, fh = 1; char ch = getchar();
for (; !isdigit(ch); ch = getchar()) if (ch == '-') fh = -1;
for (; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + (ch ^ 48);
return x * fh;
}
void File() {
#ifdef zjp_shadow
freopen ("2721.in", "r", stdin);
freopen ("2721.out", "w", stdout);
#endif
}
void Exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) x = 1, y = 0;
else Exgcd(b, a % b, y, x), y -= a / b * x;
}
inline ll Mult(ll x, ll y, ll Mod) {
ll res = 0; y = (y % Mod + Mod) % Mod;
for (; y; y >>= 1, (x += x) %= Mod)
if (y & 1) (res += x) %= Mod;
return res;
}
const int N = 1e5 + 1e3;
namespace Equations {
int n; ll mod[N], rest[N];
ll Solve() {
For (i, 1, n - 1) {
ll a = mod[i], b = mod[i + 1], c = rest[i + 1] - rest[i], gcd = __gcd(a, b), k1, k2;
if (c % gcd) return - 1;
a /= gcd; b /= gcd; c /= gcd;
Exgcd(a, b, k1, k2);
k1 = Mult(k1, c, b);
mod[i + 1] = mod[i] / __gcd(mod[i], mod[i + 1]) * mod[i + 1] ;
rest[i + 1] = (mod[i] * k1 % mod[i + 1] + rest[i] % mod[i + 1] + mod[i + 1]) % mod[i + 1];
}
return rest[n];
}
void Out() {
For (i, 1, n) printf ("%lld %lld\n", mod[i], rest[i]);
}
};
multiset<ll> S;
inline ll Find(ll x) {
multiset<ll> :: iterator it = S.upper_bound(x);
if (it != S.begin()) -- it;
ll res = *it; S.erase(it); return res;
}
int n, m; ll a[N], p[N], atk[N], award[N];
inline ll Get_Inv(ll bas, ll Mod) {
if (__gcd(bas, Mod) != 1) return -1;
static ll x, y;
Exgcd (bas, Mod, x, y);
return (x % Mod + Mod) % Mod;
}
int main () {
File();
int cases = read();
while (cases --) {
n = read(); m = read();
For (i, 1, n) a[i] = read();
For (i, 1, n) p[i] = read();
For (i, 1, n)
award[i] = read();
For (i, 1, m) { ll x = read(); S.insert(x); }
For (i, 1, n)
atk[i] = Find(a[i]), S.insert(award[i]);
S.clear();
Equations :: n = n;
bool flag = true;
ll ans = 0, lcm = 1;
For (i, 1, n) {
ll gcd = __gcd(__gcd(atk[i], p[i]), a[i]);
a[i] /= gcd; atk[i] /= gcd; p[i] /= gcd;
if (p[i] == 1) {
ans = max(ans, a[i] / atk[i] + (a[i] % atk[i] ? 1 : 0));
}
ll tmp = Get_Inv(atk[i], p[i]);
if (tmp == -1) { flag = false; break; }
Equations :: mod[i] = p[i];
Equations :: rest[i] = Mult(a[i] % p[i], tmp % p[i], p[i]);
lcm = lcm / __gcd(lcm, p[i]) * p[i];
}
if (!flag) { puts("-1"); continue ; }
ll tmp = Equations :: Solve();
if (tmp == -1) { puts("-1"); continue ; }
if (tmp < ans) {
ll gap = (ans - tmp) / lcm;
tmp += gap * lcm;
while (tmp < ans) tmp += lcm;
while (tmp - lcm > ans) tmp -= lcm;
}
printf ("%lld\n", tmp);
}
#ifdef zjp_shadow
cerr << (double) clock() / CLOCKS_PER_SEC << endl;
#endif
return 0;
}
LOJ #2721. 「NOI2018」屠龙勇士(set + exgcd)的更多相关文章
- loj#2721. 「NOI2018」屠龙勇士
题目链接 loj#2721. 「NOI2018」屠龙勇士 题解 首先可以列出线性方程组 方程组转化为在模p意义下的同余方程 因为不保证pp 互素,考虑扩展中国剩余定理合并 方程组是带系数的,我们要做的 ...
- LOJ 2721 「NOI2018」屠龙勇士——扩展中国剩余定理
题目:https://loj.ac/problem/2721 1.注意别一输入 p[ i ] 就 a[ i ] %= p[ i ] ,因为在 multiset 里找的时候还需要真实值. 2.注意用 m ...
- 「NOI2018」屠龙勇士
「NOI2018」屠龙勇士 题目描述 小\(D\)最近在网上发现了一款小游戏.游戏的规则如下: 游戏的目标是按照编号\(1-n\)顺序杀掉\(n\) 条巨龙,每条巨龙拥有一个初始的生命 值ai .同时 ...
- 「NOI2018」屠龙勇士(EXCRT)
「NOI2018」屠龙勇士(EXCRT) 终于把传说中 \(NOI2018D2\) 的签到题写掉了... 开始我还没读懂题目...而且这题细节巨麻烦...(可能对我而言) 首先我们要转换一下,每次的 ...
- POJ1061 青蛙的约会 和 LOJ2721 「NOI2018」屠龙勇士
青蛙的约会 Language:Default 青蛙的约会 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 133470 Accep ...
- 「NOI2018」屠龙勇士 解题报告
「NOI2018」屠龙勇士 首先对于每个龙用哪个剑砍,我们可以用set随便模拟一下得到. 然后求出拿这个剑砍这条龙的答案 \[ atk_ix-p_iy=a_i \] 其中\(atk_i\)是砍第\(i ...
- 「NOI2018」屠龙勇士(CRT)
/* 首先杀每条龙用到的刀是能够确定的, 然后我们便得到了许多形如 ai - x * atki | pi的方程 而且限制了x的最小值 那么exgcd解出来就好了 之后就是扩展crt合并了 因为全T调了 ...
- loj#2718. 「NOI2018」归程
题目链接 loj#2718. 「NOI2018」归程 题解 按照高度做克鲁斯卡尔重构树 那么对于询问倍增找到当前点能到达的高度最小可行点,该点的子树就是能到达的联通快,维护子树中到1节点的最短距离 s ...
- Loj #2719. 「NOI2018」冒泡排序
Loj #2719. 「NOI2018」冒泡排序 题目描述 最近,小 S 对冒泡排序产生了浓厚的兴趣.为了问题简单,小 S 只研究对 *\(1\) 到 \(n\) 的排列*的冒泡排序. 下面是对冒泡排 ...
随机推荐
- NOIp2018停课刷题记录
Preface 老叶说了高中停课但是初中不停的消息后我就为争取民主献出一份力量 其实就是和老师申请了下让我们HW的三个人听课结果真停了 那么还是珍惜这次机会好好提升下自己吧不然就\(AFO\)了 Li ...
- Docker 创建容器以及管理命令(三)
1. 创建 Apache 容器 [root@centos7 ~]# docker run -d -p : httpd // -d: 放入后台运行 // -p: 指定端口映射关系(第一个为本地端口.第二 ...
- LVM常规操作记录梳理(扩容/缩容/快照等)
基本介绍Linux用户安装Linux 操作系统时遇到的一个最常见的难以决定的问题就是如何正确地给评估各分区大小,以分配合适的硬盘空间.随着 Linux的逻辑盘卷管理功能的出现,这些问题都迎刃而解, l ...
- apacheTomcat
Window+R ------>cmd || Window PowerShell apacheTomcat\bin> ./startup.sh
- 雅思听听app
最近本人呢,正在紧张的备战雅思考试,因为英语基础很弱,尤其是听力,所以老师推荐了雅思听听这个app,说是特别好使,用了一个多月的,总体来说感觉还是很nice的,但是还有一些小毛病,不过这小毛病瑕不掩瑜 ...
- M2贡献分分配方案
1.初始分每个人都为0. 2.每周分配任务,按任务计分. 3.每周每个人有12.5分. 4.次周完成本周任务计6分. 5.未全部完成本周任务计6分. 6.12月29日统计分数,多出来的分数按完成任务数 ...
- SCRUM 12.21
从爬虫遇到的问题中我们学会了: 1.有的网站是有反爬虫机制的,外卖网站(我们猜测基本所有盈利性质的网站可能都是)全部都有. 2.我们对于反爬虫机制有了一定的了解. 本次爬虫测试中,我们最后连美团网 ...
- 11.14 Daily Scrum
实现推荐菜谱时遇到问题,这个功能要和数据库和服务器有关,所以暂时放在一边,可能在beta版本实现. 部分成员已经完成基本任务,进行完善. Today's Task Tomorrow's Task ...
- 【CV】ICCV2015_Unsupervised Learning of Visual Representations using Videos
Unsupervised Learning of Visual Representations using Videos Note here: it's a learning note on Prof ...
- 【读书笔记】Linux内核设计与实现(第三章)
3.1 进程 处于执行期的程序. 进程就是正在执行的程序代码的实时结果.内核需要有效而又透明地管理所有细节. 执行线程(简称线程):在进程中活动的对象.每个线程都拥有一个独立的程序计数器.进程栈和一组 ...