tensorFlow 基础见前博客

逻辑回归广泛应用在各类分类,回归任务中。本实验介绍逻辑回归在 TensorFlow 上的实现

理论知识回顾

逻辑回归的主要公式罗列如下:

激活函数(activation function):

损失函数(cost function):

其中

损失函数求偏导(derivative cost function):

训练模型

  • 数据准备
    首先我们需要先下载MNIST的数据集。使用以下的命令进行下载:
    wget https://devlab-1251520893.cos.ap-guangzhou.myqcloud.com/t10k-images-idx3-ubyte.gz
    wget https://devlab-1251520893.cos.ap-guangzhou.myqcloud.com/t10k-labels-idx1-ubyte.gz
    wget https://devlab-1251520893.cos.ap-guangzhou.myqcloud.com/train-images-idx3-ubyte.gz
    wget https://devlab-1251520893.cos.ap-guangzhou.myqcloud.com/train-labels-idx1-ubyte.gz

创建代码

#-*- coding:utf-8 -*-
import time
import numpy as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data MNIST = input_data.read_data_sets("./", one_hot=True) learning_rate = 0.01
batch_size = 128
n_epochs = 25 X = tf.placeholder(tf.float32, [batch_size, 784])
Y = tf.placeholder(tf.float32, [batch_size, 10]) w = tf.Variable(tf.random_normal(shape=[784,10], stddev=0.01), name="weights")
b = tf.Variable(tf.zeros([1, 10]), name="bias") logits = tf.matmul(X, w) + b entropy = tf.nn.softmax_cross_entropy_with_logits(labels=Y, logits=logits)
loss = tf.reduce_mean(entropy) optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(loss) init = tf.global_variables_initializer() with tf.Session() as sess:
sess.run(init)
n_batches = int(MNIST.train.num_examples/batch_size)
for i in range(n_epochs):
for j in range(n_batches):
X_batch, Y_batch = MNIST.train.next_batch(batch_size)
_, loss_ = sess.run([optimizer, loss], feed_dict={ X: X_batch, Y: Y_batch})
print "Loss of epochs[{0}] batch[{1}]: {2}".format(i, j, loss_)

执行结果

Loss of epochs[0] batch[0]: 2.28968191147
Loss of epochs[0] batch[1]: 2.30224704742
Loss of epochs[0] batch[2]: 2.26435565948
Loss of epochs[0] batch[3]: 2.26956915855
Loss of epochs[0] batch[4]: 2.25983452797
Loss of epochs[0] batch[5]: 2.2572259903
......
Loss of epochs[24] batch[420]: 0.393310219049
Loss of epochs[24] batch[421]: 0.309725940228
Loss of epochs[24] batch[422]: 0.378903746605
Loss of epochs[24] batch[423]: 0.472946226597
Loss of epochs[24] batch[424]: 0.259472459555
Loss of epochs[24] batch[425]: 0.290799200535
Loss of epochs[24] batch[426]: 0.256865829229
Loss of epochs[24] batch[427]: 0.250789999962
Loss of epochs[24] batch[428]: 0.328135550022

测试模型

#-*- coding:utf-8 -*-
import time
import numpy as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data MNIST = input_data.read_data_sets("./", one_hot=True) learning_rate = 0.01
batch_size = 128
n_epochs = 25 X = tf.placeholder(tf.float32, [batch_size, 784])
Y = tf.placeholder(tf.float32, [batch_size, 10]) w = tf.Variable(tf.random_normal(shape=[784,10], stddev=0.01), name="weights")
b = tf.Variable(tf.zeros([1, 10]), name="bias") logits = tf.matmul(X, w) + b entropy = tf.nn.softmax_cross_entropy_with_logits(labels=Y, logits=logits)
loss = tf.reduce_mean(entropy) optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(loss) init = tf.global_variables_initializer() with tf.Session() as sess:
sess.run(init) n_batches = int(MNIST.train.num_examples/batch_size)
for i in range(n_epochs):
for j in range(n_batches):
X_batch, Y_batch = MNIST.train.next_batch(batch_size)
_, loss_ = sess.run([optimizer, loss], feed_dict={ X: X_batch, Y: Y_batch})
print "Loss of epochs[{0}] batch[{1}]: {2}".format(i, j, loss_) n_batches = int(MNIST.test.num_examples/batch_size)
total_correct_preds = 0
for i in range(n_batches):
X_batch, Y_batch = MNIST.test.next_batch(batch_size)
preds = tf.nn.softmax(tf.matmul(X_batch, w) + b)
correct_preds = tf.equal(tf.argmax(preds, 1), tf.argmax(Y_batch, 1))
accuracy = tf.reduce_sum(tf.cast(correct_preds, tf.float32)) total_correct_preds += sess.run(accuracy) print "Accuracy {0}".format(total_correct_preds/MNIST.test.num_examples)

执行结果

Accuracy 0.9108

tensorFlow(三)逻辑回归的更多相关文章

  1. 机器学习 (三) 逻辑回归 Logistic Regression

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...

  2. 利用Tensorflow实现逻辑回归模型

    官方mnist代码: #下载Mnist数据集 import tensorflow.examples.tutorials.mnist.input_data mnist = input_data.read ...

  3. tensorflow之逻辑回归模型实现

    前面一篇介绍了用tensorflow实现线性回归模型预测sklearn内置的波士顿房价,现在这一篇就记一下用逻辑回归分类sklearn提供的乳腺癌数据集,该数据集有569个样本,每个样本有30维,为二 ...

  4. tensorflow 实现逻辑回归——原以为TensorFlow不擅长做线性回归或者逻辑回归,原来是这么简单哇!

    实现的是预测 低 出生 体重 的 概率.尼克·麦克卢尔(Nick McClure). TensorFlow机器学习实战指南 (智能系统与技术丛书) (Kindle 位置 1060-1061). Kin ...

  5. 深度学习原理与框架-Tensorflow基本操作-mnist数据集的逻辑回归 1.tf.matmul(点乘操作) 2.tf.equal(对应位置是否相等) 3.tf.cast(将布尔类型转换为数值类型) 4.tf.argmax(返回最大值的索引) 5.tf.nn.softmax(计算softmax概率值) 6.tf.train.GradientDescentOptimizer(损失值梯度下降器)

    1. tf.matmul(X, w) # 进行点乘操作 参数说明:X,w都表示输入的数据, 2.tf.equal(x, y) # 比较两个数据对应位置的数是否相等,返回值为True,或者False 参 ...

  6. Stanford大学机器学习公开课(三):局部加权回归、最小二乘的概率解释、逻辑回归、感知器算法

    (一)局部加权回归 通常情况下的线性拟合不能很好地预测所有的值,因为它容易导致欠拟合(under fitting).如下图的左图.而多项式拟合能拟合所有数据,但是在预测新样本的时候又会变得很糟糕,因为 ...

  7. 10分钟搞懂Tensorflow 逻辑回归实现手写识别

    1. Tensorflow 逻辑回归实现手写识别 1.1. 逻辑回归原理 1.1.1. 逻辑回归 1.1.2. 损失函数 1.2. 实例:手写识别系统 1.1. 逻辑回归原理 1.1.1. 逻辑回归 ...

  8. 逻辑回归,附tensorflow实现

    本文旨在通过二元分类问题.多元分类问题介绍逻辑回归算法,并实现一个简单的数字分类程序 在生活中,我们经常会碰到这样的问题: 根据苹果表皮颜色判断是青苹果还是红苹果 根据体温判断是否发烧 这种答案只有两 ...

  9. 利用TensorFlow实现多元逻辑回归

    利用TensorFlow实现多元逻辑回归,代码如下: import tensorflow as tf import numpy as np from sklearn.linear_model impo ...

随机推荐

  1. UVA 11582 Colossal Fibonacci Numbers(数学)

    Colossal Fibonacci Numbers 想先说下最近的状态吧,已经考完试了,这个暑假也应该是最后刷题的暑假了,打完今年acm就应该会退了,但是还什么都不会呢? +_+ 所以这个暑假,一定 ...

  2. bootstrap-wysiwyg这个坑

    但是用wysiwyg也是费了我不少的精力,特别是在图片上传上,下面做一些总结. 1.引入文件 wysiwyg号称只有5kb,但是实际上是将其他的依赖文件在cdn上用外链链接进来了,有以下几个文件: c ...

  3. kendo treeview checkbox初始化选中问题,没解决,暂时记录下

    想做带有checkbox的tree,由于项目一直用kendo ui for mvc,感觉 牛逼的kendo肯定有tree.结果碰到了选中的问题. 无法根据后台传来的IsChecked字段来设置  tr ...

  4. 0003-20180422-自动化第三章-python基础学习笔记

    3章 内容回顾: 1. 计算机组成 2. 程序编译器 3. 变量 4. 条件 5. 循环 6. py2与py3区别 - 默认编码, - 除法, - input ,raw_input 7. 位,字节关系 ...

  5. Spring 集成 Swagger UI

    <!-- Spring --> <dependency> <groupId>org.springframework.boot</groupId> < ...

  6. UI自动化(十)selenium定位

    浏览器操作   1 2 3 4 5 6 7 8 # 刷新 driver.refresh()   # 前进 driver.forward()   # 后退 driver.back() 获取标签元素   ...

  7. UI自动化(四)css样式

    <!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...

  8. opencv学习之路(25)、轮廓查找与绘制(四)——正外接矩形

    一.简介 二.外接矩形的查找绘制 #include "opencv2/opencv.hpp" using namespace cv; void main() { //外接矩形的查找 ...

  9. 整型 布尔值 字符串 for循环

    1.整型 2.布尔值 3.字符串 4.for循环 1.整型:.python中有长整型, Python3中只有整型 2.布尔值: bool:Ture 真       False 假 数字和布尔值可进行转 ...

  10. luogu[愚人节题目3]现代妖怪殖民地 NTT

    U34272 [愚人节题目3]现代妖怪殖民地 fft 题目链接 https://www.luogu.org/problemnew/show/U34272 思路 虽然是个py题. ntt(或者fft)模 ...