bzoj 3156: 防御准备【斜率优化dp】
就是套路咯,设s[i]为1+2+...i
首先列出dp方程\( f[i]=min(f[j]+a[i]+(i-j)*i-(s[i]-s[j])) \)
然后推一推
\]
\]
\]
\]
就没啦
#include<iostream>
#include<cstdio>
using namespace std;
const int N=1000005,inf=1e9;
int n,q[N],l,r;
long long a[N],f[N],s[N];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
double wk(int j,int k)
{
return (double)(f[j]+s[j]-f[k]-s[k])/(double)(j-k);
}
int main()
{
n=read();
for(int i=1;i<=n;i++)
a[i]=read(),s[i]=s[i-1]+i;
// for(int i=1;i<=n;i++)
// {
// f[i]=inf;
// for(int j=0;j<i;j++)
// f[i]=min(f[i],f[j]+a[i]+(i-j)*i-(s[i]-s[j]));
// }
for(int i=1;i<=n;i++)
{
while(l<r&&wk(q[l+1],q[l])<i)
l++;
f[i]=f[q[l]]+a[i]+1ll*(i-q[l])*i-(s[i]-s[q[l]]);
while(l<r&&wk(q[r-1],q[r])>wk(q[r],i))
r--;
q[++r]=i;
}
printf("%lld\n",f[n]);
return 0;
}
bzoj 3156: 防御准备【斜率优化dp】的更多相关文章
- BZOJ 3156: 防御准备 斜率优化DP
3156: 防御准备 Description Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战 ...
- bzoj3156防御准备 斜率优化dp
3156: 防御准备 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 2279 Solved: 959[Submit][Status][Discuss ...
- 【BZOJ3156】防御准备 斜率优化DP
裸题,注意:基本的判断(求Min还是Max),因为是顺着做的,且最后一个a[i]一定要取到,所以是f[n]. DP:f[i]=min(f[j]+(i-j-1)*(i-j)/2+a[i]) 依旧设x&g ...
- BZOJ3156 防御准备 斜率优化dp
Description Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战线花费值. Sampl ...
- bzoj 3156 防御准备(斜率DP)
3156: 防御准备 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 837 Solved: 395[Submit][Status][Discuss] ...
- [BZOJ3156]防御准备(斜率优化DP)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3156 分析: 简单的斜率优化DP
- BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP
1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...
- BZOJ 1010: 玩具装箱toy (斜率优化dp)
Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...
- BZOJ 1010: [HNOI2008]玩具装箱toy(斜率优化dp)
http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题意: 思路: 容易得到朴素的递归方程:$dp(i)=min(dp(i),dp(k)+(i-k ...
- BZOJ 1010 [HNOI2008]玩具装箱 (斜率优化DP)
题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=1010 思路 [斜率优化DP] 我们知道,有些DP方程可以转化成DP[i]=f[j]+x[i ...
随机推荐
- SQLSERVER DBCC命令大全
DBCC DROPCLEANBUFFERS:从缓冲池中删除所有缓存,清除缓冲区 在进行测试时,使用这个命令可以从SQLSERVER的数据缓存data cache(buffer)清除所有的测试数据,以保 ...
- typeof instanceof操作符的相关知识
数据类型 ECMAScript中有5中基本数据类型:Undefined Null Boolean Number String. Typeof运算符 对一个值使用typeof操作符可能返回下列某个字符串 ...
- 每天学点Python之collections
每天学点Python之collections 内容摘抄自:<python大法好>的每天学点Python之collections collections模块在内置数据类型(dict.list ...
- C51 静态数码管 个人笔记
显示器介绍 单片机系统中常用的显示器有: LED(Light Emitting Diode):发光二极管显示器 LCD(Liquid Crystal Display)液晶显示器 TFT 液晶显示器等. ...
- phpcms二次开发笔记
phpcms二次开发笔记 --soulsjie 以下载的全新的phpcms搭建一个新的站点为例,讲解如何利用phpcms进行二次开发 一.下载和安装phpcms http://www.phpcms.c ...
- 编程数学(A-1)-(B-1)-一个数的负次方怎么算
一个数的负几次方就是这个数的几次方的倒数.当这个数是正整数时,也就是说一个数的负n次方就是这个数的n次方分之一.例如: 2的-2次方=2的2次方分之1=4分之13的-2次方=3的2次方分之1=9分之1 ...
- 【bzoj1965】[Ahoi2005]SHUFFLE 洗牌 - 快速幂
为了表彰小联为Samuel星球的探险所做出的贡献,小联被邀请参加Samuel星球近距离载人探险活动. 由于Samuel星球相当遥远,科学家们要在飞船中度过相当长的一段时间,小联提议用扑克牌打发长途旅行 ...
- [NOIP2006] 提高组 洛谷P1065 作业调度方案
题目描述 我们现在要利用m台机器加工n个工件,每个工件都有m道工序,每道工序都在不同的指定的机器上完成.每个工件的每道工序都有指定的加工时间. 每个工件的每个工序称为一个操作,我们用记号j-k表示一个 ...
- node+mongodb+win7
一.安装mongodb,参照教程,注意要先启动mongod.exe,再启动mongd.exe.
- 洛谷——P1044 栈
P1044 栈——卡特兰数 题目背景 栈是计算机中经典的数据结构,简单的说,栈就是限制在一端进行插入删除操作的线性表. 栈有两种最重要的操作,即pop(从栈顶弹出一个元素)和push(将一个元素进栈) ...