就是套路咯,设s[i]为1+2+...i

首先列出dp方程\( f[i]=min(f[j]+a[i]+(i-j)*i-(s[i]-s[j])) \)

然后推一推

\[f[i]=f[j]+a[i]+(i-j)*i-(s[i]-s[j])
\]

\[f[i]=f[j]+a[i]+i*i-i*j-s[i]+s[j]
\]

\[i*j+f[i]=f[j]+s[j]+i*i+a[i]-s[i]
\]

\[k=i,b=f[i],y=f[j]+s[j]+i*i+a[i]-s[i]
\]

就没啦

#include<iostream>
#include<cstdio>
using namespace std;
const int N=1000005,inf=1e9;
int n,q[N],l,r;
long long a[N],f[N],s[N];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
double wk(int j,int k)
{
return (double)(f[j]+s[j]-f[k]-s[k])/(double)(j-k);
}
int main()
{
n=read();
for(int i=1;i<=n;i++)
a[i]=read(),s[i]=s[i-1]+i;
// for(int i=1;i<=n;i++)
// {
// f[i]=inf;
// for(int j=0;j<i;j++)
// f[i]=min(f[i],f[j]+a[i]+(i-j)*i-(s[i]-s[j]));
// }
for(int i=1;i<=n;i++)
{
while(l<r&&wk(q[l+1],q[l])<i)
l++;
f[i]=f[q[l]]+a[i]+1ll*(i-q[l])*i-(s[i]-s[q[l]]);
while(l<r&&wk(q[r-1],q[r])>wk(q[r],i))
r--;
q[++r]=i;
}
printf("%lld\n",f[n]);
return 0;
}

bzoj 3156: 防御准备【斜率优化dp】的更多相关文章

  1. BZOJ 3156: 防御准备 斜率优化DP

    3156: 防御准备 Description   Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战 ...

  2. bzoj3156防御准备 斜率优化dp

    3156: 防御准备 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 2279  Solved: 959[Submit][Status][Discuss ...

  3. 【BZOJ3156】防御准备 斜率优化DP

    裸题,注意:基本的判断(求Min还是Max),因为是顺着做的,且最后一个a[i]一定要取到,所以是f[n]. DP:f[i]=min(f[j]+(i-j-1)*(i-j)/2+a[i]) 依旧设x&g ...

  4. BZOJ3156 防御准备 斜率优化dp

    Description   Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战线花费值. Sampl ...

  5. bzoj 3156 防御准备(斜率DP)

    3156: 防御准备 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 837  Solved: 395[Submit][Status][Discuss] ...

  6. [BZOJ3156]防御准备(斜率优化DP)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3156 分析: 简单的斜率优化DP

  7. BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP

    1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...

  8. BZOJ 1010: 玩具装箱toy (斜率优化dp)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  9. BZOJ 1010: [HNOI2008]玩具装箱toy(斜率优化dp)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题意: 思路: 容易得到朴素的递归方程:$dp(i)=min(dp(i),dp(k)+(i-k ...

  10. BZOJ 1010 [HNOI2008]玩具装箱 (斜率优化DP)

    题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=1010 思路 [斜率优化DP] 我们知道,有些DP方程可以转化成DP[i]=f[j]+x[i ...

随机推荐

  1. reactNative 打包那些事儿

    我们项目测试时一般是debug版本,打包上线,一般是release版本,所以在测试和打包时会走不同的方法,如上图所示. 在debug版本中,会走我们本地服务器,也就是自己电脑上的服务.在release ...

  2. python 爬虫示例,方便日后参考

    参考网址:https://zhuanlan.zhihu.com/p/32037625 def getOneMoviesInfo(Mid,url): import requests from lxml ...

  3. [luoguP2401] 不等数列

    传送门 f[i][j]表示前i个数有j个<的方案数 #include <cstdio> #define N 1001 #define p 2015 int n, k; int f[N ...

  4. poj 3648 2-sat 输出任意一组解模板

    转载地址:http://blog.csdn.net/qq172108805/article/details/7603351 /* 2-sat问题,题意:有对情侣结婚,请来n-1对夫妇,算上他们自己共n ...

  5. android开发里跳过的坑——图片文件上传失败

    使用的apache的httpclient的jar包,做的http图片上传,上传时,服务器总返文件格式不对.后来发现,是由于在创建FileBody时,使用了默认的ContentType引起的.所以服务器 ...

  6. how to read openstack code : wsgi

    要读懂本篇,你至少得写过一个python的web程序,并且把它部署到web服务器上过. 什么是wsgi 假设你写了一个python的web程序,并部署到了nginx上,那么一个http request ...

  7. Why It is so hard to explain or show some thing

    Why it is hard to explain something or learn something? For example, when I first know the hadoop, I ...

  8. 我的arcgis培训照片10

    来自:http://www.cnblogs.com/gisoracle/p/4297439.html

  9. omnidazzle是mac的画笔工具

    先使用命令 brew cask install omnidazzle 试试,不行参考下面: http://macappstore.org/omnidazzle/

  10. no matching function transform?

    http://stackoverflow.com/questions/19876746/stdtolower-and-visual-studio-2013 http://forums.codeguru ...