就是套路咯,设s[i]为1+2+...i

首先列出dp方程\( f[i]=min(f[j]+a[i]+(i-j)*i-(s[i]-s[j])) \)

然后推一推

\[f[i]=f[j]+a[i]+(i-j)*i-(s[i]-s[j])
\]

\[f[i]=f[j]+a[i]+i*i-i*j-s[i]+s[j]
\]

\[i*j+f[i]=f[j]+s[j]+i*i+a[i]-s[i]
\]

\[k=i,b=f[i],y=f[j]+s[j]+i*i+a[i]-s[i]
\]

就没啦

#include<iostream>
#include<cstdio>
using namespace std;
const int N=1000005,inf=1e9;
int n,q[N],l,r;
long long a[N],f[N],s[N];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
double wk(int j,int k)
{
return (double)(f[j]+s[j]-f[k]-s[k])/(double)(j-k);
}
int main()
{
n=read();
for(int i=1;i<=n;i++)
a[i]=read(),s[i]=s[i-1]+i;
// for(int i=1;i<=n;i++)
// {
// f[i]=inf;
// for(int j=0;j<i;j++)
// f[i]=min(f[i],f[j]+a[i]+(i-j)*i-(s[i]-s[j]));
// }
for(int i=1;i<=n;i++)
{
while(l<r&&wk(q[l+1],q[l])<i)
l++;
f[i]=f[q[l]]+a[i]+1ll*(i-q[l])*i-(s[i]-s[q[l]]);
while(l<r&&wk(q[r-1],q[r])>wk(q[r],i))
r--;
q[++r]=i;
}
printf("%lld\n",f[n]);
return 0;
}

bzoj 3156: 防御准备【斜率优化dp】的更多相关文章

  1. BZOJ 3156: 防御准备 斜率优化DP

    3156: 防御准备 Description   Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战 ...

  2. bzoj3156防御准备 斜率优化dp

    3156: 防御准备 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 2279  Solved: 959[Submit][Status][Discuss ...

  3. 【BZOJ3156】防御准备 斜率优化DP

    裸题,注意:基本的判断(求Min还是Max),因为是顺着做的,且最后一个a[i]一定要取到,所以是f[n]. DP:f[i]=min(f[j]+(i-j-1)*(i-j)/2+a[i]) 依旧设x&g ...

  4. BZOJ3156 防御准备 斜率优化dp

    Description   Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战线花费值. Sampl ...

  5. bzoj 3156 防御准备(斜率DP)

    3156: 防御准备 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 837  Solved: 395[Submit][Status][Discuss] ...

  6. [BZOJ3156]防御准备(斜率优化DP)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3156 分析: 简单的斜率优化DP

  7. BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP

    1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...

  8. BZOJ 1010: 玩具装箱toy (斜率优化dp)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  9. BZOJ 1010: [HNOI2008]玩具装箱toy(斜率优化dp)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1010 题意: 思路: 容易得到朴素的递归方程:$dp(i)=min(dp(i),dp(k)+(i-k ...

  10. BZOJ 1010 [HNOI2008]玩具装箱 (斜率优化DP)

    题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=1010 思路 [斜率优化DP] 我们知道,有些DP方程可以转化成DP[i]=f[j]+x[i ...

随机推荐

  1. SIGPIPE 13 和其他信号的对照表

    SIGPIPE 13 和其他信号的对照表 SIGHUP 1 在控制终端上检测到挂断或控制线程死亡 是SIGINT 2 交互注意信号 是SIGQUIT 3 交互中止信号 是SIGILL 4 检测到非法硬 ...

  2. CodeForcesGym 100517I IQ Test

    IQ Test Time Limit: 2000ms Memory Limit: 262144KB This problem will be judged on CodeForcesGym. Orig ...

  3. [BZOJ1179] [Apio2009]Atm(tarjan缩点 + spfa)

    传送门 题意 N个点M条边的有向图 每个点有点权 从某一个结点出发 问能获得的最大点权和 一个点的点权最多被计算一次 N<=500000 M<=500000 思路 先tarjan缩点,然后 ...

  4. [NOIP2006] 提高组 洛谷P1066 2^k进制数

    题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后 ...

  5. 乱记结论之OI常用四大数列

    一.斐波那契数列 $f(0)=1,f(1)=1,f(i)=f(i-1)+f(i-2) \ \ \ \ (i>=2)$ 经典的解释是兔子生小孩,第0年一对兔子,一对兔子需要一年长大,后面每年都生小 ...

  6. java 判断一个字符串是否为纯数字

    if (getUid().matches("[0-9]+")) { Log.v("纯数字");} else { Log.v("非纯数字"); ...

  7. Codeforces 651D Image Preview【二分+枚举】

    题意: 若干张照片,从头开始可以向左右两边读,已经读过的不需要再读,有的照片需要翻转,给定读.滑动和翻转消耗的时间,求在给定时间内最多能读多少页? 分析: 首先明确,只横跨一次,即先一直读一边然后再一 ...

  8. 洛谷——P1062 数列

    洛谷——P1062 数列 题目描述 给定一个正整数k(3≤k≤15),把所有k的方幂及所有有限个互不相等的k的方幂之和构成一个递增的序列,例如,当k=3时,这个序列是: 1,3,4,9,10,12,1 ...

  9. Java :面向对象

    Java :面向对象 直面Java 第001期 什么是面向过程 面向过程是以函数为中心,要解决一个问题,需要把问题分解为一个个的步骤,然后定义一系列的流程,用特定的输入经过函数的处理,最终输出特定的结 ...

  10. wget下载网络图片

    wget http.......  --no-check-certificate