bzoj 1927 [Sdoi2010]星际竞速【最小费用最大流】
果然还是不会建图…
设\( i \)到\( j \)有通路,代价为\( w[i][j] \),瞬移到i代价为\( a[i] \),瞬移到i代价为\( a[j] \),逗号前是流量。
因为每个点只能经过一次,所以流量限制为1,注意到从s开始很难保证出发点不同,所以但是又有联通条件,所以考虑每个扩展过的点(实际不用考虑反正早晚要扩展到)只向外扩展一个点,也就是每次只选两个联通的点(包括瞬移可达)
拆点的作用是加上费用,\( s \)到所有\( i \)连流量1费用0的边,所有\(i \)向t连流量1费用0的边,\( i \)到\( i+n \)连流量1费用\( a[i] \)的边,对于可以相互到达的\( i、j \),连流量为1费用为\( v[i][j] \)的边(\( u<v \))
是不是有点像最小路径覆盖?
#include<iostream>
#include<cstdio>
#include<queue>
using namespace std;
const int N=5005,inf=1e9;
int n,m,a[N],s,t,ans,fr[N],dis[N],h[N],cnt=1;
bool v[N];
struct qwe
{
int ne,no,to,va,c;
}e[N*100];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(int u,int v,int w,int c)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].no=u;
e[cnt].to=v;
e[cnt].va=w;
e[cnt].c=c;
h[u]=cnt;
}
void ins(int u,int v,int w,int c)
{
add(u,v,w,c);
add(v,u,0,-c);
}
bool spfa()
{
queue<int>q;
for(int i=s;i<=t;i++)
dis[i]=inf;
dis[s]=0;
v[s]=1;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
v[u]=0;
for(int i=h[u];i;i=e[i].ne)
if(e[i].va>0&&dis[e[i].to]>dis[u]+e[i].c)
{
dis[e[i].to]=dis[u]+e[i].c;
fr[e[i].to]=i;
if(!v[e[i].to])
{
v[e[i].to]=1;
q.push(e[i].to);
}
}
}
return dis[t]!=inf;
}
void mcf()
{
int x=inf;
for(int i=fr[t];i;i=fr[e[i].no])
x=min(x,e[i].va);
for(int i=fr[t];i;i=fr[e[i].no])
{
ans+=x*e[i].c;
e[i].va-=x;
e[i^1].va+=x;
}
}
int main()
{
n=read(),m=read();
t=2*n+1;
for(int i=1;i<=n;i++)
{
a[i]=read();
ins(s,i,1,0);
ins(i+n,t,1,0);
ins(s,i+n,1,a[i]);
}
for(int i=1;i<=m;i++)
{
int u=read(),v=read(),w=read();
if(u>v)
swap(u,v);
ins(u,v+n,1,w);
}
while(spfa())
mcf();
printf("%d\n",ans);
return 0;
}
bzoj 1927 [Sdoi2010]星际竞速【最小费用最大流】的更多相关文章
- BZOJ 1927: [Sdoi2010]星际竞速(最小费用最大流)
拆点,费用流... ----------------------------------------------------------------------------- #include< ...
- BZOJ1927: [Sdoi2010]星际竞速(最小费用最大流 最小路径覆盖)
题意 题目链接 Sol 看完题不难想到最小路径覆盖,但是带权的咋做啊?qwqqq 首先冷静思考一下:最小路径覆盖 = \(n - \text{二分图最大匹配数}\) 为什么呢?首先最坏情况下是用\(n ...
- bzoj 1927 [Sdoi2010]星际竞速(最小费用最大流)
1927: [Sdoi2010]星际竞速 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 1576 Solved: 954[Submit][Statu ...
- BZOJ 1927: [Sdoi2010]星际竞速 费用流
1927: [Sdoi2010]星际竞速 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pr ...
- BZOJ 1927: [Sdoi2010]星际竞速 [上下界费用流]
1927: [Sdoi2010]星际竞速 题意:一个带权DAG,每个点恰好经过一次,每个点有曲速移动到他的代价,求最小花费 不动脑子直接上上下界费用流过了... s到点连边边权为曲速的代价,一个曲速移 ...
- BZOJ 1927: [Sdoi2010]星际竞速
1927: [Sdoi2010]星际竞速 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 2051 Solved: 1263[Submit][Stat ...
- Bzoj 1927: [Sdoi2010]星际竞速(网络流)
1927: [Sdoi2010]星际竞速 Time Limit: 20 Sec Memory Limit: 259 MB Description 10年一度的银河系赛车大赛又要开始了.作为全银河最盛大 ...
- BZOJ-1927 星际竞速 最小费用最大流+拆点+不坑建图
1927: [Sdoi2010]星际竞速 Time Limit: 20 Sec Memory Limit: 259 MB Submit: 1593 Solved: 967 [Submit][Statu ...
- 【BZOJ】1927: [Sdoi2010]星际竞速(费用流)
http://www.lydsy.com/JudgeOnline/problem.php?id=1927 题意:n个点的无向图.m条加权边.只能从编号小的到编号大的.可以瞬移,瞬移有时间.每个点只能访 ...
- BZOJ 1927 星际竞速(最小费用最大流)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1927 题意:一个图,n个点.对于给出的每条边 u,v,w,表示u和v中编号小的那个到编号 ...
随机推荐
- mongodb 报错问题
系统不支持:Mongo 错误位置 FILE: C:\wamp64\www\frame\a_tp32\ThinkPHP\Library\Think\Db\Driver\Mongo.class.php L ...
- Markdown中插入图片技巧收集
在操作Markdown时图片应该是最头痛的一件事! 比如要发送一个md文件给对方,如果附带了图片时,那么就要一大堆文件包括图片发给对方等等,如果使用在线图片,那么这个服务器又是一大痛点,因为你不确定这 ...
- react 使用 eslint 的三种代码检查方案总结,多了解点--让代码更完美....
1.介绍 ESLint 是一个可扩展,每条规则独立,被设计为完全可配置的lint工具. 可以用来检测代码,避免低级错误 可以用来规范代码的开发风格,统一代码习惯. 2.为什么使用 ESLint ? 统 ...
- 过滤器链chain.doFilter(request,response)含义
过滤器的生命周期一般都要经过下面三个阶段: 初始化 当容器第一次加载该过滤器时,init() 方法将被调用.该类在这个方法中包含了一个指向 Filter Config 对象的引用. 过滤 过滤器的大多 ...
- Excel小tips - 如何设置表格输入数字后末尾自动添加%
选中一列——鼠标右键——设置单元格格式——数字——自定义——0% 按照以上操作完成后,点击确定,就大功告成了.
- GAN Generative Adversarial Network 生成式对抗网络-相关内容
参考: https://baijiahao.baidu.com/s?id=1568663805038898&wfr=spider&for=pc Generative Adversari ...
- [Javascript] Link to Other Objects through the JavaScript Prototype Chain
Objects have the ability to use data and methods that other objects contain, as long as it lives on ...
- Linux如何更新软件源
Linux软件源的设置方法 1 打开数据源配置文件 vi /etc/apt/sources.list 添加相关的数据源,可以选择以下的数据源,不要写太多,否则会影响更新速度. 之后使用ap ...
- 在开发过程中,如何在手机上测试vue-cli构建的项目
由于有时候谷歌手机调试与真是的手机环境还是有一定的差距,所以需要在手机上测试项目. 手机上测试vue-cli构建项目方法: 打开项目config/index.js文件,找到module.exports ...
- vs2010下配置CUDA出现kernel launch failed问题,内核无效
首先, 推荐一篇不错的配置文档~手把手教你 CUDA 5.5与VS2010编译环境的搭建.笔者就是在这篇文章的指导下成功地在VS2010上搭建了CUDA 6.5~ 其次. 文末给出的执行演示样例不好使 ...