传送门

好神啊。。

需要用非负数个a1,a2,a3...an来凑出B

可以知道,如果一个数x能被凑出来,那么x+a1,x+a2.......x+an也都能被凑出来

那么我们只需要选择a1~an中任意一个的a,可以求出在%a下的每个数最小需要多少才能凑出来

这样我们选择一个最小的a,速度更快,令m=min(a[k]) 1 <= k <= n

然后建模,i向(i+a[j])%m连一条权值为a[j]的边

跑一边最短路就可以了

然后需要求Bmin~Bmax中的解

只需要ans(Bmax)-ans(Bmin)即可

注意a[i]==0的点。。。。

#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#define N 6000001
#define LL long long using namespace std; int n, cnt;
int head[N], to[N], next[N];
LL L, R, ans, dis[N], m = ~(1 << 31), a[21], val[N];
bool vis[N];
queue <int> q; inline LL read()
{
LL x = 0, f = 1;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -1;
for(; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - '0';
return x * f;
} inline void add(int x, int y, LL z)
{
to[cnt] = y;
val[cnt] = z;
next[cnt] = head[x];
head[x] = cnt++;
} inline void spfa()
{
int i, u, v;
for(i = 0; i < m; i++) dis[i] = 1e13;
q.push(0);
dis[0] = 0;
while(!q.empty())
{
u = q.front();
vis[u] = 0;
q.pop();
for(i = head[u]; ~i; i = next[i])
{
v = to[i];
if(dis[v] > dis[u] + val[i])
{
dis[v] = dis[u] + val[i];
if(!vis[v])
{
vis[v] = 1;
q.push(v);
}
}
}
}
} inline LL query(LL x)
{
int i;
LL ans = 0;
for(i = 0; i < m; i++)
if(dis[i] <= x)
ans += (x - dis[i]) / m + 1;
return ans;
} int main()
{
LL x, y;
int i, j;
n = read();
L = read();
R = read();
memset(head, -1, sizeof(head));
for(i = 1; i <= n; i++)
{
a[i] = read();
if(!a[i])
{
i--, n--;
continue;
}
m = min(m, a[i]);
}
for(i = 0; i < m; i++)
for(j = 1; j <= n; j++)
add(i, (i + a[j]) % m, a[j]);
spfa();
printf("%lld\n", query(R) - query(L - 1));
return 0;
}

  

[BZOJ2118] 墨墨的等式(最短路)的更多相关文章

  1. 【BZOJ2118】墨墨的等式(最短路)

    [BZOJ2118]墨墨的等式(最短路) 题面 BZOJ 洛谷 题解 和跳楼机那题是一样的. 只不过走的方式从\(3\)种变成了\(n\)种而已,其他的根本没有区别了. #include<ios ...

  2. 【BZOJ2118】墨墨的等式 最短路

    [BZOJ2118]墨墨的等式 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值 ...

  3. BZOJ2118:墨墨的等式(最短路)

    Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...

  4. BZOJ2118: 墨墨的等式(最短路 数论)

    题意 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在非负整数解. So ...

  5. BZOJ2118: 墨墨的等式(最短路构造/同余最短路)

    Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...

  6. BZOJ2118墨墨的等式[数论 最短路建模]

    2118: 墨墨的等式 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1317  Solved: 504[Submit][Status][Discus ...

  7. BZOJ2118 墨墨的等式 【最短路】

    题目链接 BZOJ2118 题解 orz竟然是最短路 我们去\(0\)后取出最小的\(a[i]\),记为\(p\),然后考虑模\(p\)下的\(B\) 一个数\(i\)能被凑出,那么\(i + p\) ...

  8. Bzoj2118 墨墨的等式

    Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1488  Solved: 578 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+ ...

  9. bzoj 2118 墨墨的等式 - 图论最短路建模

    墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在非负整数解. Input ...

  10. 【BZOJ 2118】 2118: 墨墨的等式 (最短路)

    2118: 墨墨的等式 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求 ...

随机推荐

  1. Volley源码解析(三) 有缓存机制的情况走缓存请求的源码分析

    Volley源码解析(三) 有缓存机制的情况走缓存请求的源码分析 Volley之所以高效好用,一个在于请求重试策略,一个就在于请求结果缓存. 通过上一篇文章http://www.cnblogs.com ...

  2. poj2312Battle City BFS

    题意: M行N列矩阵, 'Y'表示开始位置, 'T'表示目标位置, 从开始位置到目标位置至少需要走多少步,其中, 'S', 'R'表示不能走, 'B' 花费为2, 'E'花费为1. 思路:纯 BFS. ...

  3. spring中常用的注解

    使用注解来构造IoC容器 用注解来向Spring容器注册Bean.需要在applicationContext.xml中注册<context:component-scan base-package ...

  4. Shell脚本调用Oralce数据库SQL文生产日志

    #!/bin/shexport LANG="zh.CN.GBK" echo -n "******************************************* ...

  5. redis集群理解

    Redis在3.0中也引入了集群的概念,用于解决一些大数据量和高可用的问题,但是,为了达到高性能的目的,集群不是强一致性的,使用的是异步复制,在数据到主节点后,主节点返回成功,数据被异步地复制给从节点 ...

  6. mysqldump指令说明

    3种形式mysqldump [OPTIONS] database [tables]mysqldump [OPTIONS] -B | --databases [OPTIONS] DB1 [DB2 DB3 ...

  7. 配置charles对手机进行抓包

    1.如下打开charles配置信息:Help –> SSL Proxying –>Install Charles Root Certificate on a Mobile Device 2 ...

  8. Linux中文件压缩与解压

    压缩与解压 compress 文件名 1 -v //详细信息 2 3 -d //等于 uncompress 默认只识别 .Z 如果使用别的后缀,会导致不识别,解压缩失败.也可以使用 -d -c 压缩包 ...

  9. MySql压缩版安装及避免1055错误和msvcp120.dll丢失

    MySql压缩版安装及避免1055错误和msvcp120.dll丢失 MySQL压缩版的安装快速方便,5.7及最新的8版本安装方式大致相同. 在使用group by分组时,可能会遇到1055错误. 另 ...

  10. perl学习之FLOCK函数的调用(讲的非常好)

    一段演示flock系统调用的perl程序http://www.extmail.org/forum/viewthread.php?tid=1066