传送门

好神啊。。

需要用非负数个a1,a2,a3...an来凑出B

可以知道,如果一个数x能被凑出来,那么x+a1,x+a2.......x+an也都能被凑出来

那么我们只需要选择a1~an中任意一个的a,可以求出在%a下的每个数最小需要多少才能凑出来

这样我们选择一个最小的a,速度更快,令m=min(a[k]) 1 <= k <= n

然后建模,i向(i+a[j])%m连一条权值为a[j]的边

跑一边最短路就可以了

然后需要求Bmin~Bmax中的解

只需要ans(Bmax)-ans(Bmin)即可

注意a[i]==0的点。。。。

#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#define N 6000001
#define LL long long using namespace std; int n, cnt;
int head[N], to[N], next[N];
LL L, R, ans, dis[N], m = ~(1 << 31), a[21], val[N];
bool vis[N];
queue <int> q; inline LL read()
{
LL x = 0, f = 1;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -1;
for(; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - '0';
return x * f;
} inline void add(int x, int y, LL z)
{
to[cnt] = y;
val[cnt] = z;
next[cnt] = head[x];
head[x] = cnt++;
} inline void spfa()
{
int i, u, v;
for(i = 0; i < m; i++) dis[i] = 1e13;
q.push(0);
dis[0] = 0;
while(!q.empty())
{
u = q.front();
vis[u] = 0;
q.pop();
for(i = head[u]; ~i; i = next[i])
{
v = to[i];
if(dis[v] > dis[u] + val[i])
{
dis[v] = dis[u] + val[i];
if(!vis[v])
{
vis[v] = 1;
q.push(v);
}
}
}
}
} inline LL query(LL x)
{
int i;
LL ans = 0;
for(i = 0; i < m; i++)
if(dis[i] <= x)
ans += (x - dis[i]) / m + 1;
return ans;
} int main()
{
LL x, y;
int i, j;
n = read();
L = read();
R = read();
memset(head, -1, sizeof(head));
for(i = 1; i <= n; i++)
{
a[i] = read();
if(!a[i])
{
i--, n--;
continue;
}
m = min(m, a[i]);
}
for(i = 0; i < m; i++)
for(j = 1; j <= n; j++)
add(i, (i + a[j]) % m, a[j]);
spfa();
printf("%lld\n", query(R) - query(L - 1));
return 0;
}

  

[BZOJ2118] 墨墨的等式(最短路)的更多相关文章

  1. 【BZOJ2118】墨墨的等式(最短路)

    [BZOJ2118]墨墨的等式(最短路) 题面 BZOJ 洛谷 题解 和跳楼机那题是一样的. 只不过走的方式从\(3\)种变成了\(n\)种而已,其他的根本没有区别了. #include<ios ...

  2. 【BZOJ2118】墨墨的等式 最短路

    [BZOJ2118]墨墨的等式 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值 ...

  3. BZOJ2118:墨墨的等式(最短路)

    Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...

  4. BZOJ2118: 墨墨的等式(最短路 数论)

    题意 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在非负整数解. So ...

  5. BZOJ2118: 墨墨的等式(最短路构造/同余最短路)

    Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...

  6. BZOJ2118墨墨的等式[数论 最短路建模]

    2118: 墨墨的等式 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1317  Solved: 504[Submit][Status][Discus ...

  7. BZOJ2118 墨墨的等式 【最短路】

    题目链接 BZOJ2118 题解 orz竟然是最短路 我们去\(0\)后取出最小的\(a[i]\),记为\(p\),然后考虑模\(p\)下的\(B\) 一个数\(i\)能被凑出,那么\(i + p\) ...

  8. Bzoj2118 墨墨的等式

    Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1488  Solved: 578 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+ ...

  9. bzoj 2118 墨墨的等式 - 图论最短路建模

    墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在非负整数解. Input ...

  10. 【BZOJ 2118】 2118: 墨墨的等式 (最短路)

    2118: 墨墨的等式 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求 ...

随机推荐

  1. 限制UITextField输入长度

    如果要限制UITextField输入长度最长不超过kMaxLength,那么需要实现做以下操作: 1.实现UITextFieldDelegate协议: 2.实现textField:shouldChan ...

  2. Exception in thread "main" java.lang.NoSuchMethodError: org.apache.http.entity.ContentType.withCharset(Ljava/lang/String;)Lorg/apache/http/entity/ContentType;

    解决方案是:第一点先检查一下使用的包是否冲突,是否是版本号一致.第二点是增加一个包 忙活了好久才解决了这个异常,小小的激动一下啊啊

  3. Linux OpenGL 实践篇-13-geometryshader

    几何着色器 几何着色器是位于图元装配和片元着色器之前的一个着色器阶段,是一个可选阶段.它的输入是一个图元的完整的顶点信息,通常来自于顶点着色器,但如果细分计算着色器启用的话,那输入则是细分计算着色器的 ...

  4. UVA Live 3713 Astronauts (2-SAT)

    用布尔变量表示状态,把限制条件转化为XνY的形式以后跑2SAT,根据变量取值输出方案. #include<bits/stdc++.h> using namespace std; ; #de ...

  5. 想转行做web前端工程师,必学这5大技能!知道是那些吗?

    web前端工程师是近几年才发展出来的新兴职业,也是目前火爆且高薪的职业. 大需求的市场环境下,出现了越来越多的人群转行做web前端工程师,如设计师.后台程序员.网虫.大学其他专业.策划.编辑等等. 要 ...

  6. Python基础篇 -- 列表

    3.2 列表的增删改查 ​ 列表使用 [] 来表示,列表中每个元素与元素之间用逗号隔开 ​ 列表也有索引和切片 # 切片切出来的也是列表 lst = ["梅西", "内马 ...

  7. WYS APP

    UI图:http://modao.io/app/H8eZCQdV1pskjQ7z8bLh 四个tab:我要赛.赛事.运动吧.个人中心 赛事页面 1.主要是个NavigationController 2 ...

  8. 博弈论入门 Bash 、Nim 、Wythoff's Game结论及c++代码实现

    SG函数先不说,给自己总结下三大博弈.和二进制及黄金分割联系密切,数学真奇妙,如果不用考试就更好了. 1.Bash Game:n个物品,最少取1个,最多取m个,先取完者胜. 给对手留下(m+1)的倍数 ...

  9. luogu P1966 火柴排队 (逆序对)

    luogu P1966 火柴排队 题目链接:https://www.luogu.org/problemnew/show/P1966 显然贪心的想,排名一样的数相减是最优的. 证明也很简单. 此处就不证 ...

  10. [JOYOI] 1035 棋盘覆盖

    题目限制 时间限制 内存限制 评测方式 题目来源 1000ms 131072KiB 标准比较器 Local 题目描述 给出一张nn(n<=100)的国际象棋棋盘,其中被删除了一些点,问可以使用多 ...