传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1001

顺便推荐一个ppt,里面有对平面图的介绍:浅析最大最小定理在信息学竞赛中的应用。

这里直接求最小割肯定会T,所以应把原图看成一张平面图,ppt中说该平面图对应的对偶图的每一个环对应原图的一个割,这点有些不理解,不过不影响做这一道题。想象一下,在最外面那个无限大的平面,由左上角朝右下角连一条附加的边,这么做就多了一个附加面,设这条附加的边的权值为 -inf,那么最小割一定包含这一条边。把这条边去掉,就成了求一个最短路的问题了。

#include <cstdio>
#include <cstring> const int maxn = 1005, maxnd = maxn * maxn << 1, maxe = maxn * maxn * 3; int n, m, S, T, special = 2147483647, t1, t2, t3;
int head[maxnd], to[maxe << 1], next[maxe << 1], w[maxe << 1], lb;
char ch;
bool inq[maxnd];
int que[maxnd], h, head_, tail, d[maxnd]; inline void ist(int aa, int ss, int ww) {
to[lb] = ss;
next[lb] = head[aa];
head[aa] = lb;
w[lb] = ww;
++lb;
}
inline void readint(int & rt) {
while ((ch = getchar()) < 48);
rt = ch - 48;
while ((ch = getchar()) > 47) {
rt = rt * 10 + ch - 48;
}
} int main(void) {
//freopen("in.txt", "r", stdin);
memset(head, -1, sizeof head);
memset(next, -1, sizeof next);
readint(n); readint(m);
if (n == 1 || m == 1) {
while (scanf("%d", &t1) != EOF) {
special = special < t1? special: t1;
}
printf("%d\n", special);
return 0;
}
S = (n - 1) * (m - 1) * 2 + 1;
T = S + 1;
for (int i = 1; i <= n; ++i) {
for (int j = 1; j < m; ++j) {
t2 = (i - 1) * (m - 1) * 2 + j * 2;
t1 = t2 - (m - 1) * 2 - 1;
t1 = t1 > 0? t1: T;
t2 = t2 < S? t2: S;
scanf("%d", &t3);
ist(t1, t2, t3);
ist(t2, t1, t3);
}
}
for (int i = 1; i < n; ++i) {
t2 = (i - 1) * (m - 1) * 2 + 1;
scanf("%d", &t3);
ist(S, t2, t3);
ist(t2, S, t3);
for (int j = 2; j < m; ++j) {
t1 = (i - 1) * (m - 1) * 2 + (j - 1) * 2;
t2 = t1 + 1;
scanf("%d", &t3);
ist(t1, t2, t3);
ist(t2, t1, t3);
}
t1 = i * (m - 1) * 2;
scanf("%d", &t3);
ist(t1, T, t3);
ist(T, t1, t3);
}
for (int i = 1; i < n; ++i) {
for (int j = 1; j < m; ++j) {
t2 = (i - 1) * (m - 1) * 2 + j * 2;
t1 = t2 - 1;
scanf("%d", &t3);
ist(t1, t2, t3);
ist(t2, t1, t3);
}
} memset(d, 0x3c, sizeof d);
que[tail++] = S;
inq[S] = true;
d[S] = 0;
while (head_ != tail) {
h = que[head_++];
if (head_ == T) {
head_ = 0;
}
inq[h] = false;
for (int j = head[h]; j != -1; j = next[j]) {
if (d[to[j]] > d[h] + w[j]) {
d[to[j]] = d[h] + w[j];
if (!inq[to[j]]) {
inq[to[j]] = true;
que[tail++] = to[j];
if (tail == T) {
tail = 0;
}
}
}
}
}
printf("%d\n", d[T]);
return 0;
}

  

_bzoj1001 [BeiJing2006]狼抓兔子【平面图】的更多相关文章

  1. bzoj 1001: [BeiJing2006]狼抓兔子 平面图最小割

    平面图跑最大流 可以转换为其对偶图跑最短路 一个环对应一个割  找到最小环(即最短路)极为所求,注意辅助边的建立 加入读入优化  不过时间还是一般  估计是dij写的不好   大神勿喷~~~ /*** ...

  2. BZOJ 1001 [BeiJing2006] 狼抓兔子(平面图最大流)

    题目大意 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的.而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: ...

  3. 【BZOJ】1001: [BeiJing2006]狼抓兔子 Dinic算法求解平面图对偶图-最小割

    1001: [BeiJing2006]狼抓兔子 Description 左上角点为(1,1),右下角点为(N,M)(上图中N=4,M=5).有以下 三种类型的道路 1:(x,y)<==>( ...

  4. [BZOJ1001][BeiJing2006]狼抓兔子(最小割转最短路|平面图转对偶图)

    1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 31805  Solved: 8494[Submit][ ...

  5. BZOJ 1001: [BeiJing2006]狼抓兔子

    1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 20029  Solved: 4957[Submit][ ...

  6. BZOJ1001: [BeiJing2006]狼抓兔子 [最小割 | 对偶图+spfa]

    1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 19528  Solved: 4818[Submit][ ...

  7. BZOJ 1001: [BeiJing2006]狼抓兔子(最短路)

    平面图的最小割转化为对偶图的最短路(资料:两极相通——浅析最大最小定理在信息学竞赛中的应用) ,然后DIJKSTRA就OK了. ------------------------------------ ...

  8. BZOJ 1001: [BeiJing2006]狼抓兔子【最大流/SPFA+最小割,多解】

    1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 23822  Solved: 6012[Submit][ ...

  9. BZOJ1001: [BeiJing2006]狼抓兔子【最短路+对偶图】

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1001 1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Se ...

随机推荐

  1. Linux 网络工具

    1 nethogs nethogs 是一个免费的工具,当要查找哪个 PID (注:即 process identifier,进程 ID) 给你的网络流量带来了麻烦时,它是非常方便的.它按每个进程来分组 ...

  2. PHP 按位与或 (^ 、&)

    今天朋友群里朋友问了下 按位与或的问题.. 按位于主要是对二进制数操作. <?php $a = 1; $b = 2; $c = $a^b; ?> 这里不是单纯的相加关系 十进制 1换算成二 ...

  3. 视频录制软件&远程支持软件

    视频录制软件 软件名:SCREEN2SWF 录制完成后,可以剪辑: 工程文件,需要保存为svp文件:将视频文件保存为.exe self play 文件,或者.swf flash 文件. 远程支持,远程 ...

  4. fixedBox固定div漂浮代码 支持ie6以上大部分浏览器

    fixedBox固定div漂浮代码 支持ie6以上大部分浏览器 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//E ...

  5. [Spring实战系列](19)Servlet不同版本号之间的差别

    1.   2.3版本号 2.3版本号 <!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application ...

  6. AWK教程

    1. IBM:GAWK入门:AWK语言基础 2. Unix AWK使用手册 3. 台湾中研院计算中心ASPAC计划之AWK程序介绍 4. Study-area之AWK 5. AWK学习笔记——酷勤 持 ...

  7. 下载Youku视频观看

    所需工具: 1.chorme内核浏览器,如Chorme.Firefox等等 2.vlc视频播放器 准备工作完成,开始工作 1.打开优酷的随便一个视频 2.按下F12选择Network(网络)选择Med ...

  8. IO获取指定目录及其目录下子目录

    一.需求:获取指定目录下,指定扩展名的文件(包含子目录中的) 二.需要用到的方法 1.FilenameFilter :返回抽象路径名的定义中表示此抽象路径名的目录中的文件的数组.  filter.ac ...

  9. Node.js 101(2): Promise and async

    --原文地址:http://blog.chrisyip.im/nodejs-101-package-promise-and-async 先回想一下 Sagase 的项目结构: lib/ cli.js ...

  10. Mac下安装manen

    下载好maven,放到特定目录下: 打开终端: 进入根目录: cd ~ 创建文件.bash_profile: vi .bash_profile 编辑文件添加内容 MAVEN_HOME=/Users/c ...