在回家的路上,凯伦决定到超市停下来买一些杂货。 她需要买很多东西,但因为她是学生,所以她的预算仍然很有限。

事实上,她只花了b美元。

超市出售N种商品。第i件商品可以以ci美元的价格购买。当然,每件商品只能买一次。

最近,超市一直在努力促销。凯伦作为一个忠实的客户,收到了n张优惠券。

如果凯伦购买i次商品,她可以用i次优惠券降低di美元。 当然,不买对应的商品,优惠券不能使用。

然而,对于优惠券有一个规则。对于所有i>=2,为了使用i张优惠券,凯伦必须买第j个商品。

凯伦想知道。她能在不超过预算B的情况下购买的最大商品数量是多少?

输入输出样例

输入样例#1: 复制

6 16

10 9

10 5 1

12 2 1

20 18 3

10 2 3

2 1 5

输出样例#1: 复制

4

Solution

考试题目写挂,看错题了。想看原题的戳这里。树型dp,我们定义\(f[i][j][2]\)代表i结点选了j个节点,当前节点选不选。容易想到dp方程为

\[f[x][k+j][0]=min(f[x][k+j][0],f[to][j][0]+f[x][k][0]);
\]

\[f[x][k+j][0]=min(f[x][k+j][0],f[to][j][1]+f[x][k][0]);
\]

\[f[x][k+j][1]=min(f[x][k+j][1],f[to][j][1]-v[to]+f[x][k][1]);
\]

\[f[x][k+j][1]=min(f[x][k+j][1],f[to][j][1]+f[x][k][1]);
\]

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
struct node
{
int to,next;
}a[1000100];
int w[101000],v[100100],len,last[101010],son[100010],tot;
int f[5100][5100][2];
void add(int a1,int a2)
{
a[++len].to=a2;
a[len].next=last[a1];
last[a1]=len;
}
void dp(int x,int father)
{
son[x]=1;
for(int i=last[x];i;i=a[i].next)
{
int to=a[i].to;
if(to==father)
continue;
dp(to,x);
for(int k=son[x];k>=0;k--)
for(int j=son[to];j>=0;j--)
{
f[x][k+j][0]=min(f[x][k+j][0],f[to][j][0]+f[x][k][0]);
f[x][k+j][0]=min(f[x][k+j][0],f[to][j][1]+f[x][k][0]);
f[x][k+j][1]=min(f[x][k+j][1],f[to][j][1]-v[to]+f[x][k][1]);
f[x][k+j][1]=min(f[x][k+j][1],f[to][j][0]+f[x][k][1]);
}
son[x]+=son[to];
}
}
int main()
{
//freopen("shopping.in","r",stdin);
//freopen("shopping.out","w",stdout);
memset(f,0x3f,sizeof(f));
int n,s,x;
cin>>n>>s;
cin>>w[1]>>v[1];
w[1]-=v[1];
f[1][0][0]=0;f[1][1][1]=w[1];
for(int i=2;i<=n;i++)
{
scanf("%d%d%d",&w[i],&v[i],&x);
add(x,i);add(i,x);
}
for(int i=2;i<=n;i++)
f[i][0][0]=0,f[i][1][1]=w[i];
dp(1,0);
for(int i=n;i>=0;i--)
{
if(f[1][i][0]<=s||f[1][i][1]<=s)
{cout<<i;return 0;}
}
}

博主蒟蒻,可以随意转载,但必须附上原文链接k-z-j

[原创] Karen and Supermarket 2的更多相关文章

  1. Codeforces 815C Karen and Supermarket 树形dp

    Karen and Supermarket 感觉就是很普通的树形dp. dp[ i ][ 0 ][ u ]表示在 i 这棵子树中选择 u 个且 i 不用优惠券的最小花费. dp[ i ][ 1 ][ ...

  2. CF815C Karen and Supermarket

    题目链接 CF815C Karen and Supermarket 题解 只要在最大化数量的前提下,最小化花费就好了 这个数量枚举ok, dp[i][j][1/0]表示节点i的子树中买了j件商品 i ...

  3. CF815C Karen and Supermarket [树形DP]

    题目传送门 Karen and Supermarket On the way home, Karen decided to stop by the supermarket to buy some gr ...

  4. E. Karen and Supermarket

    E. Karen and Supermarket time limit per test 2 seconds memory limit per test 512 megabytes input sta ...

  5. Codeforces Round #419 (Div. 1) C. Karen and Supermarket 树形DP

    C. Karen and Supermarket     On the way home, Karen decided to stop by the supermarket to buy some g ...

  6. codeforces 815C Karen and Supermarket

    On the way home, Karen decided to stop by the supermarket to buy some groceries. She needs to buy a ...

  7. codeforces round #419 E. Karen and Supermarket

    On the way home, Karen decided to stop by the supermarket to buy some groceries. She needs to buy a ...

  8. Codeforces 815 C Karen and Supermarket

    On the way home, Karen decided to stop by the supermarket to buy some groceries. She needs to buy a ...

  9. 【Codeforces 815C】Karen and Supermarket

    Codeforces 815 C 考虑树型dp. \(dp[i][0/1][k]\)表示现在在第i个节点, 父亲节点有没有选用优惠, 这个子树中买k个节点所需要花的最小代价. 然后转移的时候枚举i的一 ...

随机推荐

  1. 【Luogu】P2015二叉苹果树(DP,DFS)

    题目链接 设f[i][j][k]表示给以i为根节点的子树分配j条可保留的树枝名额的时候,状态为k时能保留的最多苹果. k有三种情况. k=1:我只考虑子树的左叉,不考虑子树的右叉,此时子树能保留的最多 ...

  2. 【Openjudge】岛屿(并查集)

    题目链接 此题是并查集.考虑到水位不断上涨,所以将时间倒转.先统计最后一天的联通块个数,每一天浮出水面的块进行计算.复杂度O(玄学). 代码如下 #include<cstdio> #inc ...

  3. BZOJ 3749: [POI2015]Łasuchy【动态规划】

    Description 圆桌上摆放着n份食物,围成一圈,第i份食物所含热量为c[i]. 相邻两份食物之间坐着一个人,共有n个人.每个人有两种选择,吃自己左边或者右边的食物.如果两个人选择了同一份食物, ...

  4. vector容器中添加和删除元素

    添加元素: 方法一: insert() 插入元素到Vector中 iterator insert( iterator loc, const TYPE &val ); //在指定位置loc前插入 ...

  5. request,response,session,cookie,application

    A:request 客服端向服务器端请求 JAVA讲究封装,所以Request也是某个东西的封装,到底是什么东西呢? 按字面意思:请求! 从Http协议说起,当你发一个请求到服务端的时候,你会把一些信 ...

  6. gridview无数据源实现更新数据库(即断开更新数据库)

    原文发布时间为:2008-08-01 -- 来源于本人的百度文章 [由搬家工具导入] using System;using System.Data;using System.Configuration ...

  7. jsp、Html页面注释的种类

    <!-- 这里面的注释在查看页面源代码时,依旧可以看到,另外页面加载时这里面注释的内容仍旧会编译 --> <%-- JSP中的注释,这里面的内容在查看页面源代码时,看不到这里面注释书 ...

  8. (5)Swing事件

    import javax.swing.*; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; publi ...

  9. Netty构建游戏服务器(三)--netty spring简单整合

    一,基本方法 上节实现了netty的基本连接,这节加入spring来管理netty,由spring来开启netty服务. 在netty服务器中,我们建立了三个类:HelloServer(程序主入口) ...

  10. T3137 栈练习1 codevs

    codevs.cn/problem/3137 题目描述 Description 给定一个栈(初始为空,元素类型为整数,且小于等于100),只有两个操作:入栈和出栈.先给出这些操作,请输出最终栈的栈顶元 ...