【BZOJ】【2005】【NOI2010】能量采集
欧拉函数
玛雅,我应该先看看JZP的论文的……贾志鹏《线性筛法与积性函数》例题一
这题的做法……仔细想下可以得到:$ans=2*\sum_{a=1}^n\sum_{b=1}^m gcd(a,b)-n*m$
那么重点就在于算$\sum_{a=1}^n\sum_{b=1}^m gcd(a,b)$这个东西
copy一下JZP的推导过程:
$$ \begin{aligned} \sum_{a=1}^n \sum_{b=1}^m gcd(a,b) &= \sum_{a=1}^n \sum_{b=1}^m \sum_{d|gcd(a,b)} \varphi(d) \\ &= \sum_{a=1}^n \sum_{b=1}^m \sum_{d|a and d|b} \varphi(d) \\ &= \sum \varphi(d) \sum_{1 \leq a \leq n \&\& d|a} \sum_{1 \leq b \leq m \&\& d|b} 1 \\ &= \sum \varphi(d) ( \sum_{1 \leq a \leq n \&\& d|a} 1) * ( \sum_{1 \leq b \leq m \&\& d|b} 1) \\ &= \sum \varphi(d) \left\lfloor \frac{n}{d} \right\rfloor \left\lfloor \frac{m}{d} \right\rfloor \end{aligned} $$
/**************************************************************
Problem: 2005
User: Tunix
Language: C++
Result: Accepted
Time:40 ms
Memory:2152 kb
****************************************************************/ //BZOJ 2005
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
using namespace std;
typedef long long LL;
inline int getint(){
int r=,v=; char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-')r=-;
for(; isdigit(ch);ch=getchar()) v=v*+ch-'';
return r*v;
}
const int N=1e5+,INF=~0u>>;
/*****************template**********************/
int phi[N],prime[N],tot,n,m;
bool check[N];
void getphi(int n){
memset(check,,sizeof check);
phi[]=;
int tot=;
F(i,,n){
if(!check[i]){
prime[++tot]=i;
phi[i]=i-;
}
F(j,,tot){
if(i*prime[j]>n) break;
check[i*prime[j]]=;
if(i%prime[j]==){
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
else phi[i*prime[j]]=phi[i]*(prime[j]-);
}
}
}
int main(){
n=getint(); m=getint();
if (n>m) swap(n,m);
getphi(N-);
LL ans=;
F(i,,n)
ans+=(LL)phi[i]*(n/i)*(m/i);
printf("%lld\n",ans*-(LL)n*m);
return ;
}
【BZOJ】【2005】【NOI2010】能量采集的更多相关文章
- BZOJ 2005: [Noi2010]能量采集
2005: [Noi2010]能量采集 Time Limit: 10 Sec Memory Limit: 552 MBSubmit: 3312 Solved: 1971[Submit][Statu ...
- BZOJ 2005: [Noi2010]能量采集( 数论 + 容斥原理 )
一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) * 2 - 1. 设g(i)为 gcd(x, y) = i ( 1 <= x <= ...
- BZOJ 2005 [Noi2010]能量采集 (数学+容斥 或 莫比乌斯反演)
2005: [Noi2010]能量采集 Time Limit: 10 Sec Memory Limit: 552 MBSubmit: 4493 Solved: 2695[Submit][Statu ...
- bzoj 2005: [Noi2010]能量采集 筛法||欧拉||莫比乌斯
2005: [Noi2010]能量采集 Time Limit: 10 Sec Memory Limit: 552 MB[Submit][Status][Discuss] Description 栋栋 ...
- 【刷题】BZOJ 2005 [Noi2010]能量采集
Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...
- BZOJ 2005: [Noi2010]能量采集(莫比乌斯反演)
http://www.lydsy.com/JudgeOnline/problem.php?id=2005 题意: 思路: 首先要知道一点是,某个坐标(x,y)与(0,0)之间的整数点的个数为gcd ...
- BZOJ 2005: [Noi2010]能量采集 [莫比乌斯反演]
题意:\((0,0)\)到\((x,y),\ x \le n, y \le m\)连线上的整点数\(*2-1\)的和 \((0,0)\)到\((a,b)\)的整点数就是\(gcd(a,b)\) 因为. ...
- BZOJ 2005 [Noi2010]能量采集 ——Dirichlet积
[题目分析] 卷积一卷. 然后分块去一段一段的求. O(n)即可. [代码] #include <cstdio> #include <cstring> #include < ...
- bzoj 2005: [Noi2010]能量采集【莫比乌斯反演】
注意到k=gcd(x,y)-1,所以答案是 \[ 2*(\sum_{i=1}^{n}\sum_{i=1}^{m}gcd(i,j))-n*m \] 去掉前面的乘和后面的减,用莫比乌斯反演来推,设n< ...
- BZOJ 2005: [Noi2010]能量采集(容斥+数论)
传送门 解题思路 首先题目要求的其实就是\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m [(gcd(i,j)-1)*2+1)]\),然后变形可得\(-n*m+2\s ...
随机推荐
- 利用crontab自动更新SVN代码
shell.sh#!/bin/sh source ~/.bash_profile LANG=en_US.UTF- cd /opt/web/hzcms/ svn up >> /opt/web ...
- php中empty(), is_null(), isset()函数区别
empty(), is_null(), isset()真值表(区别) 我们先来看看这3个函数的功能描述 www.111cn.net isset 判断变量是否已存在,如果变量存在则返回 TRUE,否则返 ...
- LotusPhp中配置文件组件LtConfig详解
LotusPhp中配置文件组件LtConfig是约定的一个重要组成部分,适用于多个场景,多数的LotusPhp组件如数据库,缓存,RBAC,表单验证等都需要用到配置组件,LtConfig配置组件也是L ...
- MySQL: InnoDB 还是 MyISAM?
MyISAM存储引擎 MyISAM是 默认存储引擎.它基于更老的ISAM代码,但有很多有用的扩展.MyISAM存储引擎的一些特征:· 所有数据值先存储低字节.这使得数据机和操作系统分离.二进 ...
- IntentService 串联 按顺序执行(此次任务执行完才执行下一个任务)
IntentService与Service的最大区别就是前者依次执行,执行完当前任务才执行下一个任务,后者并发执行 在IntentService里面不写onCreate方法 MainActivity: ...
- [转]浅谈Python web框架
说到web framework,Ruby的世界Rails一统江湖,而Python则是一个百花齐放的世界,各种micro-framework.framework不可胜数,不完全列表见:http://wi ...
- 说说用C语言求根的那些事儿
C语言--求根:计算机只识别0和1,那么问题来了,作为计算工具如何解决数学问题?其实,计算机是死东西,都是程序员用计算机的的思维去加数学公式计算数学题的.听起来好高端的样子,其实啊,也就那么回事儿, ...
- 菜鸟学习Hibernate——多对多关系映射
Hibernate中的关系映射,最常见的关系映射之一就是多对多关系映射例如用户与角色的关系,一个用户对应多个角色,一个角色对应多个用户.如图: Hibernate中如何来映射这两个的关系呢? 下面就为 ...
- WARNING: /sys/kernel/mm/transparent_hugepage/enabled is
安装MONGODB 3.0.6的时候提示警告信息,如下: 2015-09-09T11:04:35.011+0800 I CONTROL [initandlisten] ** WARNING: /sys ...
- hdu 1237 简单计算器
题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1237 简单计算器 Description 读入一个只包含 +, -, *, / 的非负整数计算表达式, ...