欧拉函数


  玛雅,我应该先看看JZP的论文的……贾志鹏《线性筛法与积性函数》例题一

  这题的做法……仔细想下可以得到:$ans=2*\sum_{a=1}^n\sum_{b=1}^m gcd(a,b)-n*m$

  那么重点就在于算$\sum_{a=1}^n\sum_{b=1}^m gcd(a,b)$这个东西


copy一下JZP的推导过程:

$$ \begin{aligned}  \sum_{a=1}^n \sum_{b=1}^m gcd(a,b) &= \sum_{a=1}^n \sum_{b=1}^m \sum_{d|gcd(a,b)} \varphi(d)  \\ &= \sum_{a=1}^n \sum_{b=1}^m \sum_{d|a and d|b} \varphi(d) \\ &= \sum \varphi(d) \sum_{1 \leq a \leq n  \&\&  d|a} \sum_{1 \leq b \leq m  \&\&  d|b} 1 \\ &= \sum \varphi(d) ( \sum_{1 \leq a \leq n \&\&  d|a} 1) * ( \sum_{1 \leq b \leq m \&\& d|b} 1) \\ &= \sum \varphi(d) \left\lfloor \frac{n}{d} \right\rfloor \left\lfloor \frac{m}{d} \right\rfloor \end{aligned} $$

 /**************************************************************
Problem: 2005
User: Tunix
Language: C++
Result: Accepted
Time:40 ms
Memory:2152 kb
****************************************************************/ //BZOJ 2005
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
using namespace std;
typedef long long LL;
inline int getint(){
int r=,v=; char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-')r=-;
for(; isdigit(ch);ch=getchar()) v=v*+ch-'';
return r*v;
}
const int N=1e5+,INF=~0u>>;
/*****************template**********************/
int phi[N],prime[N],tot,n,m;
bool check[N];
void getphi(int n){
memset(check,,sizeof check);
phi[]=;
int tot=;
F(i,,n){
if(!check[i]){
prime[++tot]=i;
phi[i]=i-;
}
F(j,,tot){
if(i*prime[j]>n) break;
check[i*prime[j]]=;
if(i%prime[j]==){
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
else phi[i*prime[j]]=phi[i]*(prime[j]-);
}
}
}
int main(){
n=getint(); m=getint();
if (n>m) swap(n,m);
getphi(N-);
LL ans=;
F(i,,n)
ans+=(LL)phi[i]*(n/i)*(m/i);
printf("%lld\n",ans*-(LL)n*m);
return ;
}

【BZOJ】【2005】【NOI2010】能量采集的更多相关文章

  1. BZOJ 2005: [Noi2010]能量采集

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 3312  Solved: 1971[Submit][Statu ...

  2. BZOJ 2005: [Noi2010]能量采集( 数论 + 容斥原理 )

    一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) *  2 - 1. 设g(i)为 gcd(x, y) = i ( 1 <= x <= ...

  3. BZOJ 2005 [Noi2010]能量采集 (数学+容斥 或 莫比乌斯反演)

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 4493  Solved: 2695[Submit][Statu ...

  4. bzoj 2005: [Noi2010]能量采集 筛法||欧拉||莫比乌斯

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MB[Submit][Status][Discuss] Description 栋栋 ...

  5. 【刷题】BZOJ 2005 [Noi2010]能量采集

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...

  6. BZOJ 2005: [Noi2010]能量采集(莫比乌斯反演)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2005 题意:   思路: 首先要知道一点是,某个坐标(x,y)与(0,0)之间的整数点的个数为gcd ...

  7. BZOJ 2005: [Noi2010]能量采集 [莫比乌斯反演]

    题意:\((0,0)\)到\((x,y),\ x \le n, y \le m\)连线上的整点数\(*2-1\)的和 \((0,0)\)到\((a,b)\)的整点数就是\(gcd(a,b)\) 因为. ...

  8. BZOJ 2005 [Noi2010]能量采集 ——Dirichlet积

    [题目分析] 卷积一卷. 然后分块去一段一段的求. O(n)即可. [代码] #include <cstdio> #include <cstring> #include < ...

  9. bzoj 2005: [Noi2010]能量采集【莫比乌斯反演】

    注意到k=gcd(x,y)-1,所以答案是 \[ 2*(\sum_{i=1}^{n}\sum_{i=1}^{m}gcd(i,j))-n*m \] 去掉前面的乘和后面的减,用莫比乌斯反演来推,设n< ...

  10. BZOJ 2005: [Noi2010]能量采集(容斥+数论)

    传送门 解题思路 首先题目要求的其实就是\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m [(gcd(i,j)-1)*2+1)]\),然后变形可得\(-n*m+2\s ...

随机推荐

  1. Knockout.Js官网学习(click绑定)

    前言 click绑定在DOM元素上添加事件句柄以便元素被点击的时候执行定义的JavaScript 函数.大部分是用在button,input和连接a上,但是可以在任意元素上使用. 简单示例 <h ...

  2. Google搜索镜像

    From:http://www.cnblogs.com/killerlegend/p/3783744.html Date:2014.6.12 By KillerLegend Google 搜索:htt ...

  3. C# 多线程操作样例

    using System; using System.Threading; //引用多线程 namespace ThreadTest { public class Alpha { public voi ...

  4. STM32F0xx_看门狗(独立+窗口)配置详细过程

    Ⅰ.概述 对于看门狗,我觉得做单片机或者嵌入式开发的人员来说并不陌生,今天总结STM32F0看门狗的功能,F0的看门狗有两种:独立和窗口看门狗. 今天提供两种看门狗的软件工程实例,供大家下载. 两种看 ...

  5. linuxok6410的I2C驱动分析---用户态驱动

    3  i2c-dev 3.1 概述 之前在介绍I2C子系统时,提到过使用i2c-dev.c文件在应用程序中实现我们的I2C从设备驱动.不过,它实现的是一个虚拟,临时的i2c_client,随着设备文件 ...

  6. 一幅图证明chrome的由来和目的

  7. 任务管理界面添加显示RAM信息

    显示RAM信息的核心代码是大蛋的,我只不过是整理下教程而已! 大蛋应该不会介意的吧,首先你需要apktool和SystemUI.apk,framework-res.apk 然后开始加载框架和反编译.. ...

  8. 安装使用rspec

    一,安装ruby. 二,运行命令,安装rspec的gem包: gem install rspec 会看到如下的结果: Fetching: rspec-core-2.14.7.gem (100%) Fe ...

  9. DataGridView的DataGridViewCheckBox问题

    datagridview有一列DataGridViewCheckBox,但连续点击的话(1秒点击N次),会导致出错,数据处理不正确,感觉 private void dgv_CellContentCli ...

  10. DrawerLayout带有侧滑功能的布局类(1)

    DrawerLayout: DrawerLayout顾名思义就是一个管理布局的.使用方式可以与其它的布局类类似. DrawerLayout带有滑动的功能.只要按照drawerLayout的规定布局方式 ...