转自:http://blog.51cto.com/ahalei/1383613

       暑假,小哼准备去一些城市旅游。有些城市之间有公路,有些城市之间则没有,如下图。为了节省经费以及方便计划旅程,小哼希望在出发之前知道任意两个城市之前的最短路程。

上图中有4个城市8条公路,公路上的数字表示这条公路的长短。请注意这些公路是单向的。我们现在需要求任意两个城市之间的最短路程,也就是求任意两个点之间的最短路径。这个问题这也被称为“多源最短路径”问题。

       现在需要一个数据结构来存储图的信息,我们仍然可以用一个4*4的矩阵(二维数组e)来存储。比如1号城市到2号城市的路程为2,则设e[1][2]的值为2。2号城市无法到达4号城市,则设置e[2][4]的值为∞。另外此处约定一个城市自己是到自己的也是0,例如e[1][1]为0,具体如下。

现在回到问题:如何求任意两点之间最短路径呢?通过之前的学习我们知道通过深度或广度优先搜索可以求出两点之间的最短路径。所以进行n2遍深度或广度优先搜索,即对每两个点都进行一次深度或广度优先搜索,便可以求得任意两点之间的最短路径。可是还有没有别的方法呢?

       我们来想一想,根据我们以往的经验,如果要让任意两点(例如从顶点a点到顶点b)之间的路程变短,只能引入第三个点(顶点k),并通过这个顶点k中转即a->k->b,才可能缩短原来从顶点a点到顶点b的路程。那么这个中转的顶点k是1~n中的哪个点呢?甚至有时候不只通过一个点,而是经过两个点或者更多点中转会更短,即a->k1->k2b->或者a->k1->k2…->k->i…->b。比如上图中从4号城市到3号城市(4->3)的路程e[4][3]原本是12。如果只通过1号城市中转(4->1->3),路程将缩短为11(e[4][1]+e[1][3]=5+6=11)。其实1号城市到3号城市也可以通过2号城市中转,使得1号到3号城市的路程缩短为5(e[1][2]+e[2][3]=2+3=5)。所以如果同时经过1号和2号两个城市中转的话,从4号城市到3号城市的路程会进一步缩短为10。通过这个的例子,我们发现每个顶点都有可能使得另外两个顶点之间的路程变短。好,下面我们将这个问题一般化。
       当任意两点之间不允许经过第三个点时,这些城市之间最短路程就是初始路程,如下。
 

如现在只允许经过1号顶点,求任意两点之间的最短路程,应该如何求呢?只需判断e[i][1]+e[1][j]是否比e[i][j]要小即可。e[i][j]表示的是从i号顶点到j号顶点之间的路程。e[i][1]+e[1][j]表示的是从i号顶点先到1号顶点,再从1号顶点到j号顶点的路程之和。其中i是1~n循环,j也是1~n循环,代码实现如下。

 for(i=;i<=n;i++)
{
for(j=;j<=n;j++)
{
if ( e[i][j] > e[i][]+e[][j] )
e[i][j] = e[i][]+e[][j];
}
}
 在只允许经过1号顶点的情况下,任意两点之间的最短路程更新为:

通过上图我们发现:在只通过1号顶点中转的情况下,3号顶点到2号顶点(e[3][2])、4号顶点到2号顶点(e[4][2])以及4号顶点到3号顶点(e[4][3])的路程都变短了。

接下来继续求在只允许经过1和2号两个顶点的情况下任意两点之间的最短路程。如何做呢?我们需要在只允许经过1号顶点时任意两点的最短路程的结果下,再判断如果经过2号顶点是否可以使得i号顶点到j号顶点之间的路程变得更短。即判断e[i][2]+e[2][j]是否比e[i][j]要小,代码实现为如下。

 //经过1号顶点
for(i=;i<=n;i++)
for(j=;j<=n;j++)
if (e[i][j] > e[i][]+e[][j]) e[i][j]=e[i][]+e[][j];
//经过2号顶点
for(i=;i<=n;i++)
for(j=;j<=n;j++)
if (e[i][j] > e[i][]+e[][j]) e[i][j]=e[i][]+e[][j];
在只允许经过1和2号顶点的情况下,任意两点之间的最短路程更新为:
       通过上图得知,在相比只允许通过1号顶点进行中转的情况下,这里允许通过1和2号顶点进行中转,使得e[1][3]和e[4][3]的路程变得更短了。
       同理,继续在只允许经过1、2和3号顶点进行中转的情况下,求任意两点之间的最短路程。任意两点之间的最短路程更新为:
       最后允许通过所有顶点作为中转,任意两点之间最终的最短路程为:

整个算法过程虽然说起来很麻烦,但是代码实现却非常简单,核心代码只有五行:

 for(k=;k<=n;k++)
for(i=;i<=n;i++)
for(j=;j<=n;j++)
if(e[i][j]>e[i][k]+e[k][j])
e[i][j]=e[i][k]+e[k][j];

这段代码的基本思想就是:最开始只允许经过1号顶点进行中转,接下来只允许经过1和2号顶点进行中转……允许经过1~n号所有顶点进行中转,求任意两点之间的最短路程。用一句话概括就是:从i号顶点到j号顶点只经过前k号点的最短路程。其实这是一种“动态规划”的思想,关于这个思想我们将在《啊哈!算法2——伟大思维闪耀时》在做详细的讨论。

        通过这种方法我们可以求出任意两个点之间最短路径。它的时间复杂度是O(N3)。令人很震撼的是它竟然只有五行代码,实现起来非常容易。正是因为它实现起来非常容易,如果时间复杂度要求不高,使用Floyd-Warshall来求指定两点之间的最短路或者指定一个点到其余各个顶点的最短路径也是可行的。当然也有更快的算法,请看下一节:Dijkstra算法。
       另外需要注意的是:Floyd-Warshall算法不能解决带有“负权回路”(或者叫“负权环”)的图,因为带有“负权回路”的图没有最短路。例如下面这个图就不存在1号顶点到3号顶点的最短路径。因为1->2->3->1->2->3->…->1->2->3这样路径中,每绕一次1->-2>3这样的环,最短路就会减少1,永远找不到最短路。其实如果一个图中带有“负权回路”那么这个图则没有最短路。

此算法由Robert W. Floyd(罗伯特·弗洛伊德)于1962年发表在“Communications of the ACM”上。同年Stephen Warshall(史蒂芬·沃舍尔)也独立发表了这个算法。Robert W.Floyd这个牛人是朵奇葩,他原本在芝加哥大学读的文学,但是因为当时美国经济不太景气,找工作比较困难,无奈之下到西屋电气公司当了一名计算机操作员,在IBM650机房值夜班,并由此开始了他的计算机生涯。此外他还和J.W.J. Williams(威廉姆斯)于1964年共同发明了著名的堆排序算法HEAPSORT。堆排序算法我们将在第七章学习。Robert W.Floyd在1978年获得了图灵奖。

(转)最短路算法 -- Floyd算法的更多相关文章

  1. 最短路-SPFA算法&Floyd算法

    SPFA算法 算法复杂度 SPFA 算法是 Bellman-Ford算法 的队列优化算法的别称,通常用于求含负权边的单源最短路径,以及判负权环. SPFA一般情况复杂度是O(m)最坏情况下复杂度和朴素 ...

  2. 最短路之Floyd算法

    1.介绍 floyd算法只有五行代码,代码简单,三个for循环就可以解决问题,所以它的时间复杂度为O(n^3),可以求多源最短路问题. 2.思想: Floyd算法的基本思想如下:从任意节点A到任意节点 ...

  3. HDOJ 1217 Arbitrage(拟最短路,floyd算法)

    Arbitrage Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total ...

  4. [链接]最短路径的几种算法[迪杰斯特拉算法][Floyd算法]

    最短路径—Dijkstra算法和Floyd算法 http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html Dijkstra算 ...

  5. 只有5行代码的算法——Floyd算法

    Floyd算法用于求一个带权有向图(Wighted Directed Graph)的任意两点距离的算法,运用了动态规划的思想,算法的时间复杂度为O(n^3).具体方法是:设点i到点j的距离为d[i][ ...

  6. 多源最短路径算法—Floyd算法

    前言 在图论中,在寻路最短路径中除了Dijkstra算法以外,还有Floyd算法也是非常经典,然而两种算法还是有区别的,Floyd主要计算多源最短路径. 在单源正权值最短路径,我们会用Dijkstra ...

  7. 图的最短路径算法-- Floyd算法

    Floyd算法求的是图的任意两点之间的最短距离 下面是Floyd算法的代码实现模板: ; ; // maxv为最大顶点数 int n, m; // n 为顶点数,m为边数 int dis[maxv][ ...

  8. 最短路 之 floyd 算法

    Floyd 在我认为这是最短路算法中最简单的一个,也是最low的一个. 所以我们组一位大佬给他起了一个新的名字,叫做超时!!! (其实如果数据范围很小的话,这个算法还是蛮好用的!!) 这个算法比较简单 ...

  9. 21.多源最短路(floyd算法)

    时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 查看运行结果 题目描述 Description 已知n个点(n<=100),给你n*n的方阵,a[i,j] ...

随机推荐

  1. 【测试笔记】Redis学习笔记(十二)性能测试

    http://blog.csdn.net/yangcs2009/article/details/50781530 Redis测试服务器一 redis_version:2.8.4 www@iZ23s8a ...

  2. IntelliJ IDEA编码格式设置

    之前一直使用eclipse能够熟悉的设置工程和文件的编码格式,现在换成IntelliJ IDEA设置编码格式的地方有点变化,按照如图所示进行设置: 这里要将Transparent native-to- ...

  3. js便携小方法,你值得拥有

    引言: 本章没有深奥的讲解js一些底层原理,比如this指针.作用域.原型啦,涉及的都是一些有利于平时开发时简化代码,提高执行效率,或者说可以当做一种经验方法来使用,篇幅都不长,小步快跑的让你阅读完整 ...

  4. 多角度看.NET面试题

    1.ASP.NET中的身份验证有那些?你当前项目采用什么方式验证请解释        身份验证是从用户获取名称和密码等标识凭证并根据某些机构验证这些凭据的过程.如果凭据有效,则提交该凭据的实体被视为通 ...

  5. mysql 距离函数

    要有超级权限 SET GLOBAL log_bin_trust_function_creators = 1;DELIMITER $$CREATE DEFINER=`root`@`localhost` ...

  6. Android 动态添加Spinner(.java文件内实现) 实现 改变spinner 内文字属性

    动态添加spinner 控件 Spinner s = new Spinner(this); String []items={"自己定义的要显示的数组"}; my_SpinnerAd ...

  7. UCenter在JAVA项目中实现的单点登录应用实例

    Comsenz(康盛)的UCenter当前在国内的单点登录领域占据绝对份额,其完整的产品线令UCenter成为了账号集成方面事实上的标准. 基于UCenter,可以将Comsenz旗下的Discuz! ...

  8. HDU 1181 变形课 (深搜)

    题目连接 Problem Description 呃......变形课上Harry碰到了一点小麻烦,因为他并不像Hermione那样能够记住所有的咒语而随意的将一个棒球变成刺猬什么的,但是他发现了变形 ...

  9. php Only variables should be passed by reference 报错问题

    这个错误是变量引用引起的非致命错误,可修改php.ini文件的error_reporting = E_ALL & E_NOTICE 使其屏蔽此错误

  10. 使用ubifs格式的根文件系统

    配置内核,使其支持ubifs文件系统 1)Device Drivers  --->Memory Technology Device (MTD) support  --->UBI - Uns ...