[BZOJ5293][BJOI2018]求和(倍增)
裸的树上倍增。
#include<cstdio>
#include<cstring>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
using namespace std; const int N=,mod=;
struct E{ int to,nxt; }e[N*];
int fa[N],a[N],dep[N],f[N][],sm[N][],pow[N][];
int h[N],cnt,n,m,x,y,k; void add(int u,int v){ e[++cnt].to=v; e[cnt].nxt=h[u]; h[u]=cnt; } void Build(int x){
dep[x]=dep[fa[x]]+;
sm[x][]=; pow[x][]=;
rep(i,,){
pow[x][i]=((long long)pow[x][i-]*(long long)dep[x])%mod;
sm[x][i]=(sm[fa[x]][i]+pow[x][i])%mod;
}
for (int i=h[x]; i; i=e[i].nxt)
if (e[i].to!=fa[x]){
fa[e[i].to]=x;
f[e[i].to][]=x;
Build(e[i].to);
}
} int LCA(int x,int y){
if (dep[x]<dep[y]) swap(x,y);
for (int i=; i>=; --i)
if (dep[f[x][i]]>=dep[y]) x=f[x][i];
if (x==y) return x;
for (int i=; i>=; --i)
if (f[x][i]!=f[y][i]) x=f[x][i],y=f[y][i];
return fa[x];
} int main(){
freopen("sum.in","r",stdin);
freopen("sum.out","w",stdout);
scanf("%d",&n);
rep(i,,n-) scanf("%d%d",&x,&y),add(x,y),add(y,x);
dep[]=-; Build();
rep(i,,) rep(j,,n) f[j][i]=f[f[j][i-]][i-];
scanf("%d",&m);
rep(i,,m){
scanf("%d%d%d",&x,&y,&k); int lca=LCA(x,y);
printf("%d\n",((sm[x][k]+sm[y][k]-sm[fa[lca]][k]-sm[lca][k])%mod+mod)%mod);
}
return ;
}
[BZOJ5293][BJOI2018]求和(倍增)的更多相关文章
- bzoj5293: [Bjoi2018]求和
题目链接 bzoj5293: [Bjoi2018]求和 题解 暴力 对于lca为1的好坑啊.... 代码 #include<cmath> #include<cstdio> #i ...
- BZOJ5293: [Bjoi2018]求和 树上差分
Description master 对树上的求和非常感兴趣.他生成了一棵有根树,并且希望多次询问这棵树上一段路径上所有节点深度的k 次方和,而且每次的k 可能是不同的.此处节点深度的定义是这个节点 ...
- BZOJ5293:[BJOI2018]求和(LCA,差分)
Description master 对树上的求和非常感兴趣.他生成了一棵有根树,并且希望多次询问这棵树上一段路径上所有节点深度的k 次方和,而且每次的k 可能是不同的.此处节点深度的定义是这个节点 ...
- 【BZOJ5293】[BJOI2018]求和(前缀和,LCA)
[BZOJ5293][BJOI2018]求和(前缀和,LCA) 题面 BZOJ 洛谷 题解 送分题??? 预处理一下\(k\)次方的前缀和. 然后求个\(LCA\)就做完了?... #include& ...
- P4427 [BJOI2018]求和
P4427 [BJOI2018]求和 同[TJOI2018]教科书般的扭曲虚空 懒得写了(雾 #include<bits/stdc++.h> #define il inline #defi ...
- 【BJOI2018】求和 - 倍增LCA
题目描述 $master$ 对树上的求和非常感兴趣.他生成了一棵有根树,并且希望多次询问这棵树上一段路径上所有节点深度的$k$次方和,而且每次的$k$可能是不同的.此处节点深度的定义是这个节点到根的路 ...
- LCA+差分【p4427】[BJOI2018]求和
Description master 对树上的求和非常感兴趣.他生成了一棵有根树,并且希望多次询问这棵树上一段路径上所有节点深度的\(k\) 次方和,而且每次的\(k\) 可能是不同的.此处节点深度的 ...
- Luogu P4427 [BJOI2018]求和
这是一道巨狗题,我已无力吐槽为什么我怎么写都不过 我们对于这种无修改的边权题目有一个经典的树上差分套路: \(ans=sum_x+sum_y-2\cdot sum_{LCA(x,y)}\) 这里的\( ...
- 【刷题】BZOJ 5293 [Bjoi2018]求和
Description master 对树上的求和非常感兴趣.他生成了一棵有根树,并且希望多次询问这棵树上一段路径上所有节点深度的k 次方和,而且每次的k 可能是不同的.此处节点深度的定义是这个节点到 ...
随机推荐
- spfa+差分约束系统(D - POJ - 1201 && E - POJ - 1364&&G - POJ - 1)+建边的注意事项+超级源点的建立
题目链接:https://cn.vjudge.net/contest/276233#problem/D 具体大意: 给出n个闭合的整数区间[ai,bi]和n个整数c1,-,cn. 编写一个程序: 从标 ...
- 利用反射型XSS二次注入绕过CSP form-action限制
利用反射型XSS二次注入绕过CSP form-action限制 翻译:SecurityToolkit 0x01 简单介绍 CSP(Content-Security-Policy)是为了缓解XSS而存在 ...
- Java基础break、continue语句的用法
break适用范围:只能用于switch或者是循环语句中.当然可以用于增强for循环. break作用: 1. break用于switch语句的作用是结束一个switch语句. 2. break用于循 ...
- aarch64_l1
L-function-1.23-18.fc26.aarch64.rpm 2017-02-14 08:01 139K fedora Mirroring Project L-function-devel- ...
- No.1 selenium学习之路之浏览器操作
selenium基础,首先就是浏览器的相关操作 下面描述几种浏览器的常用操作 1.打开浏览器 webdriver后面添加想要打开的浏览器 Ie或者Chrome 2.打开指定页面(百度) 3.休眠时间 ...
- Spring框架(管理事务)
Spring底层使用Transaction事物模板来进行操作.具体操作: 1.service 需要获得 TransactionTemplate 2.spring 配置模板,并注入给service 3. ...
- 防止一个exe被打开多次
mutex有一个名字,如果这个exe已经打开了,createNew返回的就是false,程序就退出了. 这是个wpf application的例子 protected override void On ...
- Winfom 插件式(Plugins)/模块化开发框架-动态加载DLL窗体-Devexpress
插件式(AddIn)架构,不是一个新名词,应用程序采用插件式拼合,可以更好的支持扩展.很多著名的软件都采用了插件式的架构,如常见的IDE:Eclipse,Visual Studio,SharpDeve ...
- Java学习(正则表达式、Date类、DateFormat类、Calendar类)
一.正则表达式 1.概念:英语:Regular Expression,在代码中常简写为regex.正则表达式,是一个字符串,使用单个字符串来描述.用来定义匹配规则,匹配一系列符合某个句法规则的字符串. ...
- js与jquery的动态加载脚本文件
jquery动态加载 jQuery.getScript(url,[callback]) js动态加载 function loadJs(name) { document.write('<scrip ...