组合数并不陌生(´・ω・`)

我们都学过组合数

会求组合数吗

一般我们用杨辉三角性质

杨辉三角上的每一个数字都等于它的左上方和右上方的和(除了边界)

第n行,第m个就是,就是C(n, m) (从0开始)

电脑上我们就开一个数组保存,像这样

用递推求

 #include<cstdio>
const int N = + ;
const int MOD = (int)1e9 + ;
int comb[N][N];//comb[n][m]就是C(n,m)
void init(){
for(int i = ; i < N; i ++){
comb[i][] = comb[i][i] = ;
for(int j = ; j < i; j ++){
comb[i][j] = comb[i-][j] + comb[i-][j-];
comb[i][j] %= MOD;
}
}
}
int main(){
init();
}

(PS:大部分题目都要求求余,而且大部分都是对1e9+7这个数求余)

这种方法的复杂度是O(n^2),有没有O(n)的做法,当然有(´・ω・`)

因为大部分题都有求余,所以我们大可利用逆元的原理(没求余的题目,其实你也可以把MOD自己开的大一点,这样一样可以用逆元做)

根据这个公式

我们需要求阶乘和逆元阶乘

我们就用1e9+7来求余吧

代码如下:

 #include<cstdio>
const int N = + ;
const int MOD = (int)1e9 + ;
int F[N], Finv[N], inv[N];//F是阶乘,Finv是逆元的阶乘
void init(){
inv[] = ;
for(int i = ; i < N; i ++){
inv[i] = (MOD - MOD / i) * 1ll * inv[MOD % i] % MOD;
}
F[] = Finv[] = ;
for(int i = ; i < N; i ++){
F[i] = F[i-] * 1ll * i % MOD;
Finv[i] = Finv[i-] * 1ll * inv[i] % MOD;
}
}
int comb(int n, int m){//comb(n, m)就是C(n, m)
if(m < || m > n) return ;
return F[n] * 1ll * Finv[n - m] % MOD * Finv[m] % MOD;
}
int main(){
init();
}

组合大法好,要懂得善加利用(。-`ω´-)

ACM数论之旅8---组合数(组合大法好(,,• ₃ •,,) )的更多相关文章

  1. ACM数论之旅10---大组合数-卢卡斯定理(在下卢卡斯,你是我的Master吗?(。-`ω´-) )

    记得前几章的组合数吧 我们学了O(n^2)的做法,加上逆元,我们又会了O(n)的做法 现在来了新问题,如果n和m很大呢, 比如求C(n, m) % p  , n<=1e18,m<=1e18 ...

  2. acm数论之旅--组合数(转载)

    随笔 - 20  文章 - 0  评论 - 73 ACM数论之旅8---组合数(组合大法好(,,• ₃ •,,) )  补充:全错排公式:https://blog.csdn.net/Carey_Lu/ ...

  3. acm数论之旅--中国剩余定理

    ACM数论之旅9---中国剩余定理(CRT)(壮哉我大中华╰(*°▽°*)╯)   中国剩余定理,又名孙子定理o(*≧▽≦)ツ 能求解什么问题呢? 问题: 一堆物品 3个3个分剩2个 5个5个分剩3个 ...

  4. acm数论之旅--欧拉函数的证明

    随笔 - 20  文章 - 0  评论 - 73 ACM数论之旅7---欧拉函数的证明及代码实现(我会证明都是骗人的╮( ̄▽ ̄)╭) https://blog.csdn.net/chen_ze_hua ...

  5. acm数论之旅(转载) -- 逆元

    ACM数论之旅6---数论倒数,又称逆元(我整个人都倒了( ̄﹏ ̄))   数论倒数,又称逆元(因为我说习惯逆元了,下面我都说逆元) 数论中的倒数是有特别的意义滴 你以为a的倒数在数论中还是1/a吗 ( ...

  6. acm数论之旅--数论四大定理

    ACM数论之旅5---数论四大定理(你怕不怕(☆゚∀゚)老实告诉我)   (本篇无证明,想要证明的去找度娘)o(*≧▽≦)ツ ----------数论四大定理--------- 数论四大定理: 1.威 ...

  7. ACM数论之旅17---反演定理 第一回 二项式反演(神说要有光 于是就有了光(´・ω・`))

    终于讲到反演定理了,反演定理这种东西记一下公式就好了,反正我是证明不出来的~(-o ̄▽ ̄)-o 首先,著名的反演公式 我先简单的写一下o( ̄ヘ ̄*o) 比如下面这个公式 f(n) = g(1) + g ...

  8. ACM数论之旅1---素数(万事开头难(>_<))

    前言:好多学ACM的人都在问我数论的知识(其实我本人分不清数学和数论有什么区别,反正以后有关数学的知识我都扔进数论分类里面好了) 于是我就准备写一个长篇集,把我知道的数论知识和ACM模板都发上来(而且 ...

  9. acm数论之旅(转载)--素数

    https://www.cnblogs.com/linyujun/p/5198832.html 前言:好多学ACM的人都在问我数论的知识(其实我本人分不清数学和数论有什么区别,反正以后有关数学的知识我 ...

随机推荐

  1. Eclipse中Applet程序运行时Applet小程序大小的设置

       最近在跟斯坦福的CS106A,里面的java代码都是Applet程序,而我运行程序的时候发现,Applet小程序窗口大小总是固定的,但是我画的图却越来越大,所以怎么在Eclipse中run的时候 ...

  2. 菜鸟vimer成长记——第2.0章、模式初探

    首先,其他的文本编辑器只有一种模式,就是插入模式.而vim一下子颠覆了我们的世界观——有好多模式.这个是思维上的切换,很难也很重要!!! 其次,Vim 提供一个区分模式的用户界面.也就是说在不同的模式 ...

  3. SpringBoot日记——日志框架篇

    在项目的开发中,日志是必不可少的一个记录事件的组件,所以也会相应的在项目中实现和构建我们所需要的日志框架. 而市面上常见的日志框架有很多,比如:JCL.SLF4J.Jboss-logging.jUL. ...

  4. 没听说过这些,就不要说你懂并发了,two。

    引言 为了更加形象的描述并发的基础知识,因此本文LZ采用了园子里一度大火的标题形式——“没听说过XXXX,就不要说你XXXX了”.希望能够给猿友们一个醒目的警醒,借此来普及并发的基础知识,也讨论一下这 ...

  5. Revit开发小技巧——撤销操作

    最近开发Revit命令需要限制某些操作,思路是监控用户操作,如果达到限制条件,将操作回退.思路有两种: 1.调用WindowsAPI,发送快捷命令Ctrl+Z. 2.通过Revit底层提供DLL找到回 ...

  6. 本地使用js或jquery操作cookie在谷歌浏览器chrome中不生效

    一般是在本地调试cookie,无论使用jquery cookie插件还是js原生态cookie方法,在谷歌浏览器chrome中都不生效,这是什么原因? 原因是: chrome不支持js在本地操作coo ...

  7. VS Code配置初探

    之前一直在用 Webstorm,看现在 VS Code 热度那么高,想着尝试一下. 熟悉编辑器的快捷键 VS Code 快捷键一览 安装使用到的插件 Chinese(修改你的编辑器语言,默认英文) E ...

  8. vue 组件-父组件传值给子组件

    父组件通过属性,传值给子组件,子组件通过,props数组里的名称来接受父组件传过来的值. HTML部分: <div id="app"> <tmp1 :parent ...

  9. Calico网络方案

    参考文档: Difficulties with traditional overlay networks:https://www.projectcalico.org/learn/ Get Start( ...

  10. IDA入门笔记

    题目来源: 南邮CTF :: RE :: Hello,RE(应该是) XDUCTF :: ??? :: ????????(不知道不知道不知道) 总而言之我会在百度网盘再上传一份: >>百度 ...