题意:

  给定两个字符串A 和 B, 求长度不小于 k 的公共子串的个数(可以相同)

分两部分求和sa[i-1] > len1  sa[i] < len1  和  sa[i-1] < len1   sa[i] > len1

#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff;
int s[maxn];
int sa[maxn], t[maxn], t2[maxn], c[maxn], n;
int ran[maxn], height[maxn]; void get_sa(int m)
{
int i, *x = t, *y = t2;
for(i = ; i < m; i++) c[i] = ;
for(i = ; i < n; i++) c[x[i] = s[i]]++;
for(i = ; i < m; i++) c[i] += c[i-];
for(i = n-; i >= ; i--) sa[--c[x[i]]] = i;
for(int k = ; k <= n; k <<= )
{
int p = ;
for(i = n-k; i < n; i++) y[p++] = i;
for(i = ; i < n; i++) if(sa[i] >= k) y[p++] = sa[i] - k;
for(i = ; i < m; i++) c[i] = ;
for(i = ; i < n; i++) c[x[y[i]]]++;
for(i = ; i< m; i++) c[i] += c[i-];
for(i = n-; i >= ; i--) sa[--c[x[y[i]]]] = y[i];
swap(x, y);
p = ; x[sa[]] = ;
for(i = ; i < n; i++)
x[sa[i]] = y[sa[i-]] == y[sa[i]] && y[sa[i-]+k] == y[sa[i]+k] ? p- : p++;
if(p >= n) break;
m = p;
}
int k = ;
for(i = ; i < n; i++) ran[sa[i]] = i;
for(i = ; i < n; i++)
{
if(k) k--;
int j = sa[ran[i]-];
while(s[i+k] == s[j+k]) k++;
height[ran[i]] = k;
}
} int k, top, num;
LL sum, ans;
char s1[maxn], s2[maxn];
int stac[maxn], cnt[maxn];
int main()
{
while(~rd(k) && k)
{
top = sum = num = ans = n = ;
rs(s1); rs(s2);
int len1 = strlen(s1);
int len2 = strlen(s2);
rep(i, , len1)
s[n++] = s1[i];
s[n++] = '#';
rep(i, , len2)
s[n++] = s2[i];
s[n++] = ;
get_sa();
rep(i, , n)
{
if(height[i] < k)
{
sum = top = ;
continue;
}
int num = ;
while(top && height[i] < stac[top]) //维持单调递增栈 可能当前sa[i-1] < len1 但height是连续的 所以短板效应替换栈中元素
{ //而它自己如果sa[i-1] < len1 那么下面的 num是不加1的 即自己不算在内
sum -= (LL)(stac[top] - k + ) * cnt[top];
sum += (LL)(height[i] - k + ) * cnt[top];
num += cnt[top];
top--;
}
stac[++top] = height[i];
if(sa[i-] > len1) //扫描B串
{
sum += (LL)(height[i] - k + );
cnt[top] = num + ;
}
else
cnt[top] = num;
if(sa[i] < len1)
ans += sum;
}
rep(i, , n)
{
if(height[i] < k)
{
sum = top = ;
continue;
}
int num = ;
while(top && height[i] < stac[top])
{
sum -= (LL)(stac[top] - k + ) * cnt[top];
sum += (LL)(height[i] - k + ) * cnt[top];
num += cnt[top];
top--;
}
stac[++top] = height[i];
if(sa[i-] < len1) //扫描A串
{
sum += (LL)(height[i] - k + );
cnt[top] = num + ;
}
else
cnt[top] = num;
if(sa[i] > len1)
ans += sum;
}
printf("%lld\n", ans); } return ;
}

Common Substrings POJ - 3415(长度不小于k的公共子串的个数)的更多相关文章

  1. POJ-Common Substrings(后缀数组-长度不小于 k 的公共子串的个数)

    题意: 长度不小于 k 的公共子串的个数 分析: 基本思路是计算 A 的所有后缀和 B 的所有后缀之间的最长公共前缀的长度,把最长公共前缀长度不小于 k 的部分全部加起来. 先将两个字符串连起来,中间 ...

  2. POJ 3415 Common Substrings(长度不小于K的公共子串的个数+后缀数组+height数组分组思想+单调栈)

    http://poj.org/problem?id=3415 题意:求长度不小于K的公共子串的个数. 思路:好题!!!拉丁字母让我Wa了好久!!单调栈又让我理解了好久!!太弱啊!! 最简单的就是暴力枚 ...

  3. POJ 3415 Common Substrings 【长度不小于 K 的公共子串的个数】

    传送门:http://poj.org/problem?id=3415 题意:给定两个串,求长度不小于 k 的公共子串的个数 解题思路: 常用技巧,通过在中间添加特殊标记符连接两个串,把两个串的问题转换 ...

  4. 【POJ 3415】Common Substrings 长度不小于k的公共子串的个数

    长度不小于k的公共子串的个数,论文里有题解,卡了一上午,因为sum没开long long!!! 没开long long毁一生again--- 以后应该早看POJ里的Discuss啊QAQ #inclu ...

  5. POJ - 3415 Common Substrings(后缀数组求长度不小于 k 的公共子串的个数+单调栈优化)

    Description A substring of a string T is defined as: T( i, k)= TiTi+1... Ti+k-1, 1≤ i≤ i+k-1≤| T|. G ...

  6. poj 3415 后缀数组 两个字符串中长度不小于 k 的公共子串的个数

    Common Substrings Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 11469   Accepted: 379 ...

  7. POJ 3415 不小于k的公共子串的个数

    Common Substrings Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 9248   Accepted: 3071 ...

  8. Common Substrings POJ - 3415 (后缀自动机)

    Common Substrings \[ Time Limit: 5000 ms\quad Memory Limit: 65536 kB \] 题意 给出两个字符串,要求两个字符串公共子串长度不小于 ...

  9. 【poj3415-长度不小于k的公共子串个数】后缀数组+单调栈

    这题曾经用sam打过,现在学sa再来做一遍. 基本思路:计算A所有的后缀和B所有后缀之间的最长公共前缀. 分组之后,假设现在是做B的后缀.前面的串能和当前的B后缀产生的公共前缀必定是从前往后单调递增的 ...

随机推荐

  1. VMware Workstation and Device/Credential Guard are not compatible

    VMware Workstation and Device/Credential Guard are not compatible. VMware Workstation can be run aft ...

  2. Unity3D — — UGUI之RectTransform

    Mask.GetComponent<RectTransform>().anchoredPosition(子物体) = hotKey_image.rectTransform.anchored ...

  3. 2018爆零记第二弹之day0

    话说初赛水了个70分,ε=(´ο`*)))唉,还是太菜了. 今天两点左右到了电子科大对面宾馆,收拾安顿好后又去电子科大踩点. 进门又走过了不长不短的水杉道,来到了不大不小的西湖(为什么是这个名字... ...

  4. join命令详解

    基础命令学习目录首页 原文链接:https://www.cnblogs.com/agilework/archive/2012/04/18/2454877.html 功能说明:将两个文件中,指定栏位内容 ...

  5. 分布式高并发下全局ID生成策略

    数据在分片时,典型的是分库分表,就有一个全局ID生成的问题.单纯的生成全局ID并不是什么难题,但是生成的ID通常要满足分片的一些要求:   1 不能有单点故障.   2 以时间为序,或者ID里包含时间 ...

  6. 团队项目M1阶段个人反思

    郑培蕾: 作为项目的PM,我前期的工作还是有很大的缺陷的,因为没有在开发之前对项目进行一个合理的评估,所以后来分配任务的时候就很不科学, 而且任务分配的比较粗糙,没有细化到每个人每天应该做什么,这就导 ...

  7. 20135316王剑桥 linux第四周课实验笔记

    第三章 程序的机器级表示 3.1历史观点 Intel处理器的换代:8086——80286——i386——i486——Pentium——PentiumPro——PentiumII——PentiumIII ...

  8. 第二阶段Sprint冲刺会议7

    进展:试着把视频录制功能加到时间提醒中,但是整合没有成功,今天没有进展.

  9. Answer the questions(回答自己的问题)

    第一章: 问题:我们现在学了这个专业,如果想全面去了解,应该还要学习哪些课程? 回答:其实软件工程只是一个比较大的范畴,以后如果要出去工作,我们还要细分,比如说开发安卓,开发游戏,web架构方面等很多 ...

  10. java异常处理及自定义异常的使用

    1. 异常介绍 异常机制可以提高程序的健壮性和容错性. Throwable:Throwable是java语言所有错误或异常的超类. 有两个子类Error和Exception. 1.1 编译期异常 编译 ...