题目描述

小 C 数学成绩优异,于是老师给小 C 留了一道非常难的数学作业题:

给定正整数 N 和 M ,要求计算Concatenate (1 .. N) Mod M 的值,其中 Concatenate (1 .. N) 是将所有正整数 1, 2, …, N顺序连接起来得到的数。例如,N = 13 , Concatenate (1 .. N)=12345678910111213 .小C 想了大半天终于意识到这是一道不可能手算出来的题目,于是他只好向你求助,希望你能编写一个程序帮他解决这个问题。

输入输出格式

输入格式:

从文件input.txt中读入数据,输入文件只有一行且为用空格隔开的两个正整数N和M,其中30%的数据满足1≤N≤1000000 ;100%的数据满足1≤N≤10^18 且1≤M≤10^9 .


输出格式:

输出文件 output.txt 仅包含一个非负整数,表示 Concatenate(1..N) Mod M 的值。

输入输出样例

输入样例#1:

13 13
输出样例#1:

4

Solution:

  本题矩阵快速幂。

  思路比较简单,范围内的10进制位权最多就18种。

  对于每种位权下的递推:$f[i]=f[i-1]*10^p+i$

  显然可以用矩阵去优化:

$\begin{bmatrix}f[i] & i+1 & 1\end{bmatrix}$ $\times$ $\begin{bmatrix} 10^p &0 &0 \\ 1& 1&0 \\ 0& 1&1 \end{bmatrix}$ $\rightarrow$ $\begin{bmatrix}f[i+1]& i+2 & 1\end{bmatrix}$

代码:

/*Code by 520 -- 10.8*/
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
#define clr(p) memset(&p,0,sizeof(p))
using namespace std;
ll n,mod,base[];
struct matrix{
int r,c;ll a[][];
}; il matrix mul(matrix x,matrix y){
matrix tp; clr(tp);
tp.r=x.r,tp.c=y.c;
For(i,,x.r-) For(j,,y.c-) For(k,,x.c-)
tp.a[i][j]=(x.a[i][k]%mod*y.a[k][j]%mod+tp.a[i][j])%mod;
return tp;
} int main(){
cin>>n>>mod;
base[]=;
For(i,,) base[i]=base[i-]*;
matrix ans,tp; clr(ans),clr(tp);
ans.r=,ans.c=; ans.a[][]=,ans.a[][]=,ans.a[][]=;
tp.r=tp.c=; tp.a[][]=tp.a[][]=tp.a[][]=tp.a[][]=;
ll pos=,k=; int cnt=;
while(pos<n){
if(n>=base[cnt+]) k=base[cnt+]-base[cnt];
else k=n-base[cnt]+;
pos+=k;ans.a[][]=base[cnt]%mod;
clr(tp),tp.r=tp.c=;
tp.a[][]=base[cnt+]%mod;
tp.a[][]=tp.a[][]=tp.a[][]=tp.a[][]=;
while(k){
if(k&) ans=mul(ans,tp);
k>>=,tp=mul(tp,tp);
}
cnt++;
}
cout<<ans.a[][];
return ;
}

P3216 [HNOI2011]数学作业的更多相关文章

  1. [luogu P3216] [HNOI2011]数学作业

    [luogu P3216] [HNOI2011]数学作业 题目描述 小 C 数学成绩优异,于是老师给小 C 留了一道非常难的数学作业题: 给定正整数 N 和 M,要求计算 Concatenate (1 ...

  2. P3216 [HNOI2011]数学作业 (矩阵快速幂)

    P3216 [HNOI2011]数学作业 题目描述 小 C 数学成绩优异,于是老师给小 C 留了一道非常难的数学作业题: 给定正整数 NN 和 MM ,要求计算 Concatenate (1 .. N ...

  3. 洛谷P3216 [HNOI2011] 数学作业 [矩阵加速,数论]

    题目传送门 数学作业 题目描述 小 C 数学成绩优异,于是老师给小 C 留了一道非常难的数学作业题: 给定正整数 N和 M,要求计算 Concatenate (1 .. N)Mod M 的值,其中 C ...

  4. 洛谷P3216 [HNOI2011]数学作业

    题目描述 小 C 数学成绩优异,于是老师给小 C 留了一道非常难的数学作业题: 给定正整数 N 和 M,要求计算 Concatenate (1 .. N) Mod M 的值,其中 Concatenat ...

  5. 洛谷 P3216 [HNOI2011]数学作业

    最近学了矩阵,kzj大佬推荐了我这一道题目. 乍一眼看上去,没看出是矩阵,就随便打了一个暴力,30分. 然后仔细分析了一波,发现蛮简单的. 结果全wa了,先看看下面的错误分析吧! 首先,设f[n]为最 ...

  6. [bzoj2326] [洛谷P3216] [HNOI2011] 数学作业

    想法 最初的想法就是记录当前 \(%m\) 值为cur,到下一个数时 \(cur=cur \times 10^x + i\) n这么大,那就矩阵乘法呗. 矩阵乘法使用的要点就是有一个转移矩阵会不停的用 ...

  7. bzoj2326: [HNOI2011]数学作业

    矩阵快速幂,分1-9,10-99...看黄学长的代码理解...然而他直接把答案保存在最后一行(没有说明...好吧应该是我智障这都不知道... #include<cstdio> #inclu ...

  8. BZOJ 2326: [HNOI2011]数学作业( 矩阵快速幂 )

    BZOJ先剧透了是矩阵乘法...这道题显然可以f(x) = f(x-1)*10t+x ,其中t表示x有多少位. 这个递推式可以变成这样的矩阵...(不会用公式编辑器...), 我们把位数相同的一起处理 ...

  9. [HNOI2011]数学作业 --- 矩阵优化

    [HNOI2011]数学作业 题目描述: 小 C 数学成绩优异,于是老师给小 C 留了一道非常难的数学作业题: 给定正整数 N 和 M ,要求计算\(Concatenate(1..N)\; Mod\; ...

随机推荐

  1. 动态加载与插件系统的初步实现(三):WinForm示例

    代码文件在此Download,本文章围绕前文所述默认AppDomain.插件容器AppDomain两个域及IPlugin.PluginProvider.PluginProxy3个类的使用与变化进行. ...

  2. 黑白表格样式教师求职简历免费word模板

    10款精黑白表格样式教师求职简历免费word模板,也可用于其他专业和职业,个人免费简历模板,个人简历表免费,个人简历表格. 声明:该简历模板仅用于个人欣赏使用,请勿用于商业用途,谢谢. 下载地址:百度 ...

  3. 大数据中Hadoop集群搭建与配置

    前提环境是之前搭建的4台Linux虚拟机,详情参见 Linux集群搭建 该环境对应4台服务器,192.168.1.60.61.62.63,其中60为主机,其余为从机 软件版本选择: Java:JDK1 ...

  4. 简单字典实现(KV问题)

    搜索二叉树基本概念请看上篇博客 这两个问题都是典型的K(key)V(value)问题,我们用KV算法解决. 判断一个单词是否拼写正确:假设把所有单词都按照搜索树的性质插入到搜索二叉树中,我们判断一个单 ...

  5. Scrapy爬取携程桂林问答

    guilin.sql: CREATE TABLE `guilin_ask` ( `id` INT(11) NOT NULL AUTO_INCREMENT COMMENT '主键', `question ...

  6. Jmeter接口测试(八)cookie设置

    HTTP Cookie 管理器 如果你有一个 HTTP 请求,其返回结果里包含一个 cookie,那么 使用 JmeterCookie 管理器会自动将该 cookie保存起来,而且以后所有对该网站的请 ...

  7. implode函数的升级版,将一个多维数组的值转化为字符串

    /** * implode函数的升级版 * 将一个多维数组的值转化为字符串 * @param $glue * @param $data * @return string */function mult ...

  8. Python里的类和对象简介

    ---恢复内容开始--- Python里的类  对象=属性+方法: 对象的属性主要是指主要的特征和参量,而方法主要是指函数: 类是一个具有一定特征和方法的集合,而对象是类的一个:类和对象的关系就如同模 ...

  9. Linux系列——安装双系统Ubuntu

    作为一个穷人,电脑破得不行却没钱换,怎么办呢,不如换个Ubuntu吧,没有Windows那么多后台应用,在我这台古董上稍微流畅一点. Linux有很多发行版,比较流行和适合入门的就是Ubuntu和De ...

  10. 面向 Web 开发者的 Sublime Text 插件

    Package Control 在 Sublime Text 上大家都用 Package Control 来管理安装插件,所以它是我们要安装的第一个插件,安装方法见这里.关于 Package Cont ...