本题征求翻译。如果你能提供翻译或者题意简述,请 提交翻译 ,感谢你的贡献。

题目描述

PDF

输入输出格式

输入格式:

输出格式:

输入输出样例

输入样例#1: 复制

3
6
10
256
输出样例#1: 复制

0.6250
0.7266
0.9500

题解

这个本来是黄题被我打了个绿之后就变成绿题了哈哈哈哈哈哈哈

为了方便想我们设一共有$2n$个人,每种汉堡有$n$个。

>以下错解

>那么前$2n-2$个人中间必须要恰好有$n$个人选了一种汉堡,$n-2$个人选了另一种汉堡。

>那么就很好写啦,$ans=C_{2n-2}^{n}/2^{2n-2}$!

>然后发现n=3的样例都过不了qwq

>然后我跟队友YY分析出了原因:

>如果到第$i$个人的时候已经选了$n$个汉堡的话,那么它之后的选择概率就会从$\frac{1}{2}$变成$1$,这样直接把$2^{2n-2}$当方案数就会错掉qwq

怎么办呢?

考虑求后两个人能吃到不一样的汉堡的概率。

那么$now=C_{2n-2}^{n-1}/2^{2n-2}$!

这样我们只选到了$n-1$,就能保证每次选择的概率是$\frac{1}{2}$了qwq

最后容斥一下,$ans=1-now$就好了。

.

然后代码为了精度做了一些奇怪操作,总之就是求那个式子的就是了qwq

  qwerta
UVA557 Burger Accepted
代码 C++,.37KB
提交时间 -- ::
耗时/内存 2620ms, 0KB
#include<iostream>
#include<cstdio>
using namespace std;
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int n;
scanf("%d",&n);
n/=;
double ans=;
int tim=*n-;
for(int i=;i<=n-;++i)
{
ans*=(i+n-);
ans/=i;
while(ans>=&&tim)
{
ans*=0.5;
tim--;
}
}
while(tim)
{
ans*=0.5;
tim--;
}
printf("%.4f\n",-ans);
}
return ;
}

「UVA557」 Burger(概率的更多相关文章

  1. Loj #2192. 「SHOI2014」概率充电器

    Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...

  2. Loj #2542. 「PKUWC2018」随机游走

    Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...

  3. 「ZJOI2017」树状数组(二维线段树)

    「ZJOI2017」树状数组(二维线段树) 吉老师的题目真是难想... 代码中求的是 \(\sum_{i=l-1}^{r-1}a_i\),而实际求的是 \(\sum_{i=l}^{r}a_i\),所以 ...

  4. 「ZJOI2015」地震后的幻想乡 解题报告

    「ZJOI2015」地震后的幻想乡 想了半天,打开洛谷题解一看,最高票是_rqy的,一堆密密麻麻的积分差点把我吓跑. 据说有三种解法,然而我只学会了一种最辣鸡的凡人解法. 题意:给一个无向图\(G\) ...

  5. 「SCOI2015」小凸解密码 解题报告

    「SCOI2015」小凸解密码 题意:给一个环,定义一段连续的极长\(0\)串为\(0\)区间,定义一个位置的离一个\(0\)区间的距离为这个位置离这个区间中\(0\)的距离的最小值,每次询问一个位置 ...

  6. 「SDOI2014」重建 解题报告

    「SDOI2014」重建 题意 给一个图\(G\),两点\((u,v)\)有边的概率是\(p_{u,v}\),求有\(n-1\)条边通行且组成了一颗树的概率是多少. 抄了几个矩阵树定理有趣的感性说法 ...

  7. loj#2076. 「JSOI2016」炸弹攻击 模拟退火

    目录 题目链接 题解 代码 题目链接 loj#2076. 「JSOI2016」炸弹攻击 题解 模拟退火 退火时,由于答案比较小,但是温度比较高 所以在算exp时最好把相差的点数乘以一个常数让选取更差的 ...

  8. loj#2552. 「CTSC2018」假面

    题目链接 loj#2552. 「CTSC2018」假面 题解 本题严谨的证明了我菜的本质 对于砍人的操作好做找龙哥就好了,blood很少,每次暴力维护一下 对于操作1 设\(a_i\)为第i个人存活的 ...

  9. 「PKUWC2018」猎人杀

    「PKUWC2018」猎人杀 解题思路 首先有一个很妙的结论是问题可以转化为已经死掉的猎人继续算在概率里面,每一轮一直开枪直到射死一个之前没死的猎人为止. 证明,设所有猎人的概率之和为 \(W\) , ...

随机推荐

  1. 17:不重复整数提取NoRepeatNum

    题目描述 输入一个int型整数,按照从右向左的阅读顺序,返回一个不含重复数字的新的整数. 输入描述:输入一个int型整数 输出描述:按照从右向左的阅读顺序,返回一个不含重复数字的新的整数 输入例子: ...

  2. elementary OS安装搜狗输入法

    © 版权声明:本文为博主原创文章,转载请注明出处 1.添加搜狗输入法的软件源 sudo add-apt-repository ppa:fcitx-team/nightly 1.1 可能遇到的问题: s ...

  3. Qt4.8.5配置相关问题

    空余时间想看看Qt,在安装和编译过程中遇到了一些值得记录的东西,总结一下. (一)安装 1.先安装编译环境qt-creator-win-opensource-3.0.0.exe.使用默认路径C:\Qt ...

  4. java变参

    java变参是通过数组来实现的 Object[] addAll(Object[] array1, Object... array2)和Object[] addAll(Object[] array1, ...

  5. centos部署Python环境

    在centos上部署Python之前,我们需要先配置开发环境. 1.安装Python依赖的开发工具包 gcc自然少不了,可以直接用“Development Tools”: yum grouplist ...

  6. CentOS6下基于Nginx搭建mp4/flv流媒体服务器

    CentOS6下基于Nginx搭建mp4/flv流媒体服务器(可随意拖动)并支持RTMP/HLS协议(含转码工具) 1.先添加几个RPM下载源 1.1)安装RPMforge的CentOS6源 [roo ...

  7. 跳过权限检查,强制修改mysql密码

    windows: 1,停止MYSQL服务,CMD打开DOS窗口,输入 net stop mysql 2,在CMD命令行窗口,进入MYSQL安装目录 比如E:\Program Files\MySQL\M ...

  8. linux程序设计——网络信息(第十五章)

    15.3    网络信息 当眼下为止,客户和server程序一直是吧地址和port号编译到它们自己的内部. 对于一个更通用的server和客户程序来说.能够通过网络信息函数来决定应该使用的地址和por ...

  9. 【BZOJ2989】数列 kd-tree

    [BZOJ2989]数列 Description 给定一个长度为n的正整数数列a[i]. 定义2个位置的graze值为两者位置差与数值差的和,即graze(x,y)=|x-y|+|a[x]-a[y]| ...

  10. EasyNVR摄像机H5流媒体服务器在windows上批处理脚本自动以管理员权限运行

    很多时候, 我们需要以管理员权限来运行批处理脚本, 比如操作 windows 服务. EasyNVR 中提供安装服务的批处理脚本, 运行这个bat文件, 自动将 EasyNVR 以 windows 服 ...