传送门

嗯……概率期望这东西太神了……

先考虑一下最佳方案,肯定是从大到小亮的就灭(这个仔细想一想应该就能发现)

那么直接一遍枚举就能$O(nlogn)$把这个东西给搞出来

然后考虑期望dp,设$f[i]$表示从$i$个正确选项中选择一个正确的变为$i-1$个的期望次数

那么$$f[i]=\frac{i}{n}+(1-\frac{i}{n})*(1+f[i+1]+f[i])$$

其中$\frac{i}{n}$表示一次就选了正确的选项,$(1-\frac{i}{n})$表示按错了,那么会增加一个正确选项,然后这个时候要按回去次数是$(1+f[i+1]+f[i])$,然后再加上按错的一次

那么移项可得$$f[i]=1+\frac{(n-i)*(f[i]+1)+1}{n}$$

然后只要从后往前递推就可以了

 //minamoto
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=,mod=;
int b[N];vector<int> g[N];
int f[N],inv[N],n,k;
void solve(){
int ans=,tp=;
for(int i=;i<=n;++i)
for(int j=i;j<=n;j+=i)
g[j].push_back(i);
for(int i=n;i;--i)
if(b[i]){
++tp;
for(int j=,s=g[i].size();j<s;++j) b[g[i][j]]^=;
}
if(tp<=k) ans=tp;
else{
f[n]=;
for(int i=n-;i;--i) f[i]=(1ll+1ll*(n-i)*(f[i+]+)*inv[i])%mod;
for(int i=tp;i>k;--i) (ans+=f[i])%=mod;
(ans+=k)%=mod;
}
for(int i=;i<=n;++i) ans=1ll*ans*i%mod;
printf("%d\n",ans);
}
int main(){
// freopen("testdata.in","r",stdin);
n=read(),k=read();
for(int i=;i<=n;++i) b[i]=read();
inv[]=;
for(int i=;i<=n;++i) inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
solve();
return ;
}

洛谷P3750 [六省联考2017]分手是祝愿(期望dp)的更多相关文章

  1. 洛谷 P3750 [六省联考2017]分手是祝愿

    传送门 题解 //Achen #include<algorithm> #include<iostream> #include<cstring> #include&l ...

  2. [bzoj4872] [洛谷P3750] [六省联考2017] 分手是祝愿

    Description Zeit und Raum trennen dich und mich. 时空将你我分开. \(B\) 君在玩一个游戏,这个游戏由 \(n\) 个灯和 \(n\) 个开关组成, ...

  3. 洛谷 P3750 - [六省联考2017]分手是祝愿(期望 dp)

    题面传送门 首先我们需注意到这样一个性质:那就是对于任何一种状态,将其变为全 \(0\) 所用的最小步数的方案是唯一的--考虑编号为 \(n\) 的灯,显然如果它原本是暗着的就不用管它了,如果它是亮着 ...

  4. P3750 [六省联考2017]分手是祝愿 期望DP

    \(\color{#0066ff}{ 题目描述 }\) Zeit und Raum trennen dich und mich. 时空将你我分开. B 君在玩一个游戏,这个游戏由 \(n\) 个灯和 ...

  5. [BZOJ4872][六省联考2017]分手是祝愿(期望DP)

    4872: [Shoi2017]分手是祝愿 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 516  Solved: 342[Submit][Statu ...

  6. [六省联考2017]分手是祝愿 期望DP

    表示每次看见期望的题就很懵逼... 但是这题感觉还是值得一做,有可借鉴之处 要是下面这段文字格式不一样的话(虽然好像的确不一样,我也不知道为什么,是直接从代码里面复制出来的,因为我一般都是习惯在代码里 ...

  7. [六省联考2017]分手是祝愿——期望DP

    原题戳这里 首先可以确定的是最优策略一定是从大到小开始,遇到亮的就关掉,因此我们可以\(O(nlogn)\)的预处理出初始局面需要的最小操作次数\(tot\). 然后容(hen)易(nan)发现即使加 ...

  8. BZOJ 4872 luogu P3750 [六省联考2017]分手是祝愿

    4872: [Shoi2017]分手是祝愿 Time Limit: 20 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description ...

  9. luogu P3750 [六省联考2017]分手是祝愿

    luogu loj 可以发现在最优策略中,每种操作最多只会做一次,并且操作的先后顺序并不会影响答案,所以考虑从后往前扫,碰到一个\(1\)就对这个位置\(i\)进行操作,这样的操作一定是最优策略.记最 ...

随机推荐

  1. 7-6 公路村村通(30 分) 【prime】

    7-6 公路村村通(30 分) 现有村落间道路的统计数据表中,列出了有可能建设成标准公路的若干条道路的成本,求使每个村落都有公路连通所需要的最低成本. 输入格式: 输入数据包括城镇数目正整数N(≤10 ...

  2. ajax 异步 跨域上传图片

    客户端 <label for="text">名称</label> <input type="text" id="text ...

  3. 插头dp小结

    插头dp: \(A:\)插头dp是什么? \(B:\)一种基于连通性状态压缩的动态规划问题 \(A:\)请问有什么应用呢? \(B:\)各种网格覆盖问题,范围允许状压解决,常用于计算方案数与联通块权值 ...

  4. appium不支持Android7.0系统设备解决办法

    1. 找到appium的安装目录下的adb.js文件. 2. 打开adb.js,手动修改该文件下的内容: Adb.prototype.getPIDsByName=function(name,cb){ ...

  5. 算法(Algorithms)第4版 练习 1.3.23 1.3.22

    1.3.23 When it comes time to update t.next, x.next is no longer the original node following x, but i ...

  6. Hadoop- HDFS的Safemode

    Hadoop- HDFS的Safemode hadoop启动时,NameNode启动完后就开始进入安全模式,等待DataNode向NameNode发送block report ,当datanode b ...

  7. html5--1.11列表

    html5--1.11列表 学习要点: 无序列表 有序列表 列表的属性 自定义列表 1.无序列表的基本格式 ul(unorder line)标签里面放li标签就好了,每一项就是一个li(LineIte ...

  8. 岭回归与Lasso回归

    线性回归的一般形式 过拟合问题及其解决方法 问题:以下面一张图片展示过拟合问题 解决方法:(1):丢弃一些对我们最终预测结果影响不大的特征,具体哪些特征需要丢弃可以通过PCA算法来实现:(2):使用正 ...

  9. codeforces 658D D. Bear and Polynomials(数学)

    题目链接: D. Bear and Polynomials time limit per test 2 seconds memory limit per test 256 megabytes inpu ...

  10. P1880 [NOI1995]石子合并[区间dp+四边形不等式优化]

    P1880 [NOI1995]石子合并 丢个地址就跑(关于四边形不等式复杂度是n方的证明) 嗯所以这题利用决策的单调性来减少k断点的枚举次数.具体看lyd书.这部分很生疏,但是我还是选择先不管了. # ...