BZOJ1008: [HNOI2008]越狱-快速幂+取模
1008: [HNOI2008]越狱
Time Limit: 1 Sec Memory Limit: 162 MB
Submit: 8689 Solved: 3748
Description
监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种。如果
相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱
Input
输入两个整数M,N.1<=M<=10^8,1<=N<=10^12
Output
可能越狱的状态数,模100003取余
Sample Input
Sample Output
HINT
6种状态为(000)(001)(011)(100)(110)(111)
#include<bits/stdc++.h>
typedef unsigned long long ull;
using namespace std;
ull n=1e5+3;
ull pow(ull a,ull b){
ull ans=;
while(b!=){
if(b%==)
ans=ans*a%n;
a=a*a%n;
b=b/;
}
return ans;
}
int main(){
ull a,b;
while(~scanf("%llu%llu",&a,&b)){
ull h=pow(a,b);
ull k=pow(a-,b-);
ull ans=(h+n-a*k%n)%n;
printf("%llu\n",ans);
}
return ;
}
BZOJ1008: [HNOI2008]越狱-快速幂+取模的更多相关文章
- BZOJ 1008: [HNOI2008]越狱-快速幂/取模
1008: [HNOI2008]越狱 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8689 Solved: 3748 Description 监狱有 ...
- BZOJ1008 [HNOI2008]越狱 快速幂
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1008 题意概括 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可 ...
- bzoj1008 [HNOI2008]越狱——快速幂
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1008 (这样一道水题还因为忘记写 %lld WA了那么多遍) 发生越狱的状态数,就是全部状态 ...
- [HNOI2008] 越狱 快速幂
[HNOI2008] 越狱 快速幂 水.考虑不发生越狱的情况:即宗教相同的都不相邻,一号任意放\(m\)种宗教的人,此后\(n-1\)个房间都放与上一个宗教不同的人,有\(m-1\)种,所以共有\(m ...
- 【转】C语言快速幂取模算法小结
(转自:http://www.jb51.net/article/54947.htm) 本文实例汇总了C语言实现的快速幂取模算法,是比较常见的算法.分享给大家供大家参考之用.具体如下: 首先,所谓的快速 ...
- HDU 1061 Rightmost Digit --- 快速幂取模
HDU 1061 题目大意:给定数字n(1<=n<=1,000,000,000),求n^n%10的结果 解题思路:首先n可以很大,直接累积n^n再求模肯定是不可取的, 因为会超出数据范围, ...
- UVa 11582 (快速幂取模) Colossal Fibonacci Numbers!
题意: 斐波那契数列f(0) = 0, f(1) = 1, f(n+2) = f(n+1) + f(n) (n ≥ 0) 输入a.b.n,求f(ab)%n 分析: 构造一个新数列F(i) = f(i) ...
- POJ3641-Pseudoprime numbers(快速幂取模)
题目大意 判断一个数是否是伪素数 题解 赤果果的快速幂取模.... 代码: #include<iostream> #include<cmath> using namespace ...
- 九度OJ 1085 求root(N, k) -- 二分求幂及快速幂取模
题目地址:http://ac.jobdu.com/problem.php?pid=1085 题目描述: N<k时,root(N,k) = N,否则,root(N,k) = root(N',k). ...
随机推荐
- JAVA多线程统计日志计数时的线程安全及效率问题
最近工作上遇到一个需求:需要根据nginx日志去统计每个域名的qps(Query Per Second,每秒查询率)数据. 解决了日志读取等问题之后,为了写一个尽可能高效的统计模块,我决定用多线程去计 ...
- 学习ABP ASP.NET Core with Angular 环境问题
1. 前言 最近学习ABP架构 搭建ASP.NET Core with Angular遇到了些问题,折腾了一个礼拜最终在今天解决了,想想这个过程的痛苦就想利用博客记录下来.其实一直想写博客,但因为 时 ...
- scala写算法-用小根堆解决topK
topK问题是指从大量数据中获取最大(或最小)的k个数,比如从全校学生中寻找成绩最高的500名学生等等. 本问题可采用小根堆解决.思路是先把源数据中的前k个数放入堆中,然后构建堆,使其保持堆序(可以简 ...
- [置顶]
webapi token、参数签名是如何生成的
一个问题 在这里我想问大家一句,如果你向一个刚刚接触.net web后端程序开发的同学(别人刚刚也就学了webform的request,response,会提交表单的这种刚接触不久的同学),你怎么去解 ...
- 【bzoj3809】Gty的二逼妹子序列
Description Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了一个难题. 对于一段妹子们,他们想让你帮忙求出这之内美丽度∈[a,b]的妹子的美丽度的种类数. 为了方便,我们 ...
- Cat 跨线程之 TaggedTransaction 用法和原理分析
代码 package com.dianping.cat.message.internal; import com.dianping.cat.Cat; import com.dianping.cat.m ...
- Java 多线程笔记
资料来源于网络,仅供参考学习. 1.A Java program ends when all its threads finish (more specifically, when all its ...
- Io 异常: The Network Adapter could not establish the connection
新接触一个项目,导入源码,在本地启动的时候后台报了一个错误: Could not discover the dialect to use. java.sql.SQLException: Io 异常: ...
- 房上的猫:JavaDoc注释
//这是一个注释 /* *这是一个演示程序 */ /** *@这是JavaDoc注释. */ JavaDoc注释 背景: javadoc是Sun公司提供的一个技术,它从程序源代码中抽 ...
- leetcode — reorder-list
/** * Source : https://oj.leetcode.com/problems/reorder-list/ * * Given a singly linked list L: L0→L ...