Segments

Given n segments in the two dimensional space, write a program, which determines if there exists a line such that after projecting these segments on it, all projected segments have at least one point in common.

Input

Input begins with a number T showing the number of test cases and then, T test cases follow. Each test case begins with a line containing a positive integer n ≤ 100 showing the number of segments. After that, n lines containing four real numbers x1y1 x2 y2 follow, in which (x1y1) and (x2y2) are the coordinates of the two endpoints for one of the segments.

Output

For each test case, your program must output "Yes!", if a line with desired property exists and must output "No!" otherwise. You must assume that two floating point numbers a and b are equal if |a - b| < 10-8.

Sample Input

3
2
1.0 2.0 3.0 4.0
4.0 5.0 6.0 7.0
3
0.0 0.0 0.0 1.0
0.0 1.0 0.0 2.0
1.0 1.0 2.0 1.0
3
0.0 0.0 0.0 1.0
0.0 2.0 0.0 3.0
1.0 1.0 2.0 1.0

Sample Output

Yes!
Yes!
No!

题目的意思是,求一条直线,将已知线段投影到这条直线上有一个共同交点,判断是否存在这条直线。

这题要直接去求会很麻烦。但是想一想,将所有线段投影后,如果有共同点,则,这个点实际上是由n个点叠在一起的。如果我们把它展开了,以另一个视角观察将会是这样的:

所有线段在直线ansL上都会有一个共同的投影点,A。再观察,发现那些投影到A点的点都被直线L所经过。所以,题目就变成了,判断是否存在一条直线,与所有线段相交。

在实际操作时,只需枚举2n个点中任意两个点,判断经过这两点的直线是否符合要求。

 #include<cstdio>
 #include<cstring>
 #include<algorithm>
 #include<cmath>
 using namespace std;
 ;
 int n;
 ],v[];
 point operator - (point P,point Q){point ret; ret.x=P.x-Q.x,ret.y=P.y-Q.y; return ret;}
 double cross(point P,point Q){return P.x*Q.y-Q.x*P.y;}
 bool jug(point P,point Q){
     ;
     ; i<n; i++) ;
     ;
 }
 int main(){
     int T;
     for (scanf("%d",&T); T; T--){
         scanf("%d",&n);
         ; i<n; i++) scanf("%lf%lf%lf%lf",&u[i].x,&u[i].y,&v[i].x,&v[i].y);
         ; ) flag=;
         ; i<n-; i++) if (!flag)
             ; j<n; j++) if (!flag)
             if(jug(u[i],u[j])||jug(u[i],v[j])||jug(v[i],u[j])||jug(v[i],v[j])) flag=true;
         printf("%s\n",flag?"Yes!":"No!");
     }
     ;
 }

Segments的更多相关文章

  1. [LeetCode] Number of Segments in a String 字符串中的分段数量

    Count the number of segments in a string, where a segment is defined to be a contiguous sequence of ...

  2. Greenplum记录(一):主体结构、master、segments节点、interconnect、performance monitor

    结构:Client--master host--interconnect--segment host 每个节点都是单独的PG数据库,要获得最佳的性能需要对每个节点进行独立优化. master上不包含任 ...

  3. Application package 'AndroidManifest.xml' must have a minimum of 2 segments.

    看了源码就是packagename里面必须包含一个. 源码在: ./sdk/eclipse/plugins/com.android.ide.eclipse.adt/src/com/android/id ...

  4. segments&cache

    Segments 执行效果 命令  在 sense 里边执行  GET /abcd/_segments  前边的是索引名称,后边是请求 段信息 说明  索引是面向分片的,是由于索引是由一个或多个分片( ...

  5. [UCSD白板题] Points and Segments

    Problem Introduction The goal in this problem is given a set of segments on a line and a set of poin ...

  6. [UCSD白板题] Covering Segments by Points

    Problem Introduction You are given a set of segments on a line and your goal is to mark as few point ...

  7. MAPPING SEGMENTS TO PAGES

    The segmentation and paging mechanisms provide in the support a wide variety of approaches to memory ...

  8. Codeforces Round #337 (Div. 2) D. Vika and Segments 线段树 矩阵面积并

    D. Vika and Segments     Vika has an infinite sheet of squared paper. Initially all squares are whit ...

  9. Leetcode: Number of Segments in a String

    Count the number of segments in a string, where a segment is defined to be a contiguous sequence of ...

  10. Codeforces Round #337 Vika and Segments

    D. Vika and Segments time limit per test:  2 seconds     memory limit per test:  256 megabytes input ...

随机推荐

  1. 【Luogu P2764】最小路径覆盖问题

    网络流 \(24\) 题之一. Problem Description 给出一个 \(n\) 个点 \(m\) 条边的 \(DAG\) ,求最小路径点覆盖,并输出路径选择方案. Input Forma ...

  2. 解决:springmvc中接收date数据问题

    这里提供三种解决方案. 一.局部转换 :只是对当前Controller类有效 springMVC.xml中添加: <bean class="org.springframework.we ...

  3. WebGIS前端地图显示之根据地理范围换算出瓦片行列号的原理(核心)

    文章版权由作者李晓晖和博客园共有,若转载请于明显处标明出处:http://www.cnblogs.com/naaoveGIS/. 1.前言 在上一节中我们知道了屏幕上一像素等于实际中多少单位长度(米或 ...

  4. mac终端不好用?用brew神器代替

    一.概念 Brew是一款Mac OS平台下的软件包管理工具,拥有安装.卸载.更新.查看.搜索等很多实用的功能.简单的一条指令,就可以实现包管理,而不用你关心各种依赖和文件路径的情况,十分方便快捷. 官 ...

  5. React组件导入的两种方式(动态导入组件的实现)

    一. react组件两种导入方式 React组件可以通过两种方式导入另一个组件 import(常用) import component from './component' require const ...

  6. Educational Codeforces Round 23 D. Imbalanced Array 单调栈

    D. Imbalanced Array time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  7. str_replace 批量查找替换字符串

    <?php $str = 'I Love You!'; $str = str_replace('o','O',$str,$count); echo $str.PHP_EOL; // I LOve ...

  8. NYOJ 1277Decimal integer conversion (第九届河南省省赛)

    XiaoMing likes mathematics, and heis just learning how to convert numbers between different bases , ...

  9. 分散的配置文件VS集中的注册表

    假设有这样一个工程,是这样设计的: 1整个软件.服务被切分为 由若干独立的多道程序(多个进程/微服务): 2 这些多道程序只是“机制mechanism”,而“策略strategy”写在各自用到的配置文 ...

  10. 大数据新手之路三:安装Kafka

    Ubuntu16.04+Kafka1.0.0 1.下载kafka_2.11-1.0.0.tgz http://kafka.apache.org/downloads 2.解压到/usr/local/ka ...