python中RabbitMQ的使用(工作队列)
消息可以理解为任务,消息发送者可以看成任务派送者(sender),消息接收者可以看成工作者(worker)。
当工作者接收到一个任务,还没完任务时分配者又发一个任务,此时需要多个工作者来共同处理这些任务。
任务分派结构图如下:

注:此时有一个任务派送人P,两个工作接收者C1和C2。
现在我们来模拟该情况:
1.首先打开三个终端:


2.分别在前两个终端运行receive1.py

3.在第三个终端多次运行send1.py

此时将会轮流向worker1和worker2分派任务。
问题:
在以上任务分配和完成情况中,有几个问题将会产生:
1.工作者任务是否完成?
2.工作者挂掉后,如何防止未完成的任务丢失,并且如何处理这些任务?
3.RabbitMQ自身出现问题,此时如何防止任务丢失?
4.任务有轻重之分,如何实现公平调度?
方案:
1.消息确认(Message acknowledgment)
当任务完成后,工作者(receiver)将消息反馈给RabbitMQ:
def callback(ch, method, properties, body):
print " [x] Received %r" % (body,)
#停顿5秒,方便ctrl+c退出
time.sleep(5)
print " [x] Done"
#当工作者完成任务后,会反馈给rabbitmq
ch.basic_ack(delivery_tag=method.delivery_tag)
2.保留任务(no_ack=False)
当工作者挂掉后,防止任务丢失:
# 去除no_ack=True参数或者设置为False后可以实现
# 一个工作者ctrl+c退出后,正在执行的任务也不会丢失,rabbitmq会将任务重新分配给其他工作者。
channel.basic_consume(callback, queue='task_queue', no_ack=False)
3.消息持久化存储(Message durability)
声明持久化存储:
# durable=True即声明持久化存储
channel.queue_declare(queue='task_queue', durable=True)
在发送任务时,用delivery_mode=2来标记任务为持久化存储:
# 用delivery_mode=2来标记任务为持久化存储:
channel.basic_publish(exchange='',
routing_key='task_queue',
body=message,
properties=pika.BasicProperties(
delivery_mode=2,
))
4.公平调度(Fair dispatch)
使用basic_qos设置prefetch_count=1,使得rabbitmq不会在同一时间给工作者分配多个任务,即只有工作者完成任务之后,才会再次接收到任务
channel.basic_qos(prefetch_count=1)
完整代码如下:
receive1.py
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import pika
import time hostname = '192.168.1.133'
parameters = pika.ConnectionParameters(hostname)
connection = pika.BlockingConnection(parameters) # 创建通道
channel = connection.channel()
# durable=True后将任务持久化存储,防止任务丢失
channel.queue_declare(queue='task_queue', durable=True) # ch.basic_ack为当工作者完成任务后,会反馈给rabbitmq
def callback(ch, method, properties, body):
print " [x] Received %r" % (body,)
time.sleep(5)
print " [x] Done"
ch.basic_ack(delivery_tag=method.delivery_tag) # basic_qos设置prefetch_count=1,使得rabbitmq不会在同一时间给工作者分配多个任务,
# 即只有工作者完成任务之后,才会再次接收到任务。
channel.basic_qos(prefetch_count=1) 27 # 去除no_ack=True参数或者设置为False后可以实现
28 # 一个工作者ctrl+c退出后,正在执行的任务也不会丢失,rabbitmq会将任务重新分配给其他工作者。
channel.basic_consume(callback, queue='task_queue', no_ack=False)
# 开始接收信息,按ctrl+c退出
print ' [*] Waiting for messages. To exit press CTRL+C'
channel.start_consuming()
send1.py
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import pika
import random hostname = '192.168.1.133'
parameters = pika.ConnectionParameters(hostname)
connection = pika.BlockingConnection(parameters) # 创建通道
channel = connection.channel()
# 如果rabbitmq自身挂掉的话,那么任务会丢失。所以需要将任务持久化存储起来,声明持久化存储:
channel.queue_declare(queue='task_queue', durable=True) number = random.randint(1, 1000)
message = 'hello world:%s' % number # 在发送任务的时候,用delivery_mode=2来标记任务为持久化存储:
channel.basic_publish(exchange='',
routing_key='task_queue',
body=message,
properties=pika.BasicProperties(
delivery_mode=2,
))
print " [x] Sent %r" % (message,)
connection.close()
示例如下:
首先启动三个终端,两个先执行receive1.py,第三个多次执行rend1.py:
终端3:
此时分配三个任务,33分配给worker1,170分配给worker2,262分配给worker1

终端1:
worker1完成任务33后,开始任务262,我们在任务完成前使用(CRTL+C)使worker1挂掉

终端2:
worker2完成任务170,本来没有任务,但是worker1挂掉,此时接收他的任务262

python中RabbitMQ的使用(工作队列)的更多相关文章
- python中RabbitMQ的使用(安装和简单教程)
1,简介 RabbitMQ是一个由erlang开发的AMQP(Advanced Message Queue )的开源实现的产品,RabbitMQ是一个消息代理,从"生产者"接收消息 ...
- python中RabbitMQ的使用(远程过程调用RPC)
在RabbitMQ消息队列中,往往接收者.发送者不止是一个身份.例如接接收者收到消息并且需要返回给发送者. 此时接收者.发送者的身份不再固定! 我们来模拟该情形: 假设有客户端client,服务端se ...
- python中RabbitMQ的使用(交换机,广播形式)
简介 如果要让每个接收端都能收到消息,此时需要将消息广播出去,需要使用交换机. 工作原理 消息发送端先将消息发送给交换机,交换机再将消息发送到绑定的消息队列,而后每个接收端都能从各自的消息队列里接收到 ...
- python中RabbitMQ的使用(路由键模糊匹配)
路由键模糊匹配 使用正则表达式进行匹配.其中“#”表示所有.全部的意思:“*”只匹配到一个词. 匹配规则: 路由键:routings = [ 'happy.work', 'happy.life' , ...
- python中RabbitMQ的使用(路由键)
1.简介 当我们希望每个接收端接收各自希望的消息时,我们可以使用路由键,此时交换机的类型为direct. 2.工作原理 每个接收端的消息队列在绑定交换机的时候,可以设定相应的路由键. 发送端通过交换机 ...
- rabbitmq(中间消息代理)在python中的使用
在之前的有关线程,进程的博客中,我们介绍了它们各自在同一个程序中的通信方法.但是不同程序,甚至不同编程语言所写的应用软件之间的通信,以前所介绍的线程.进程队列便不再适用了:此种情况便只能使用socke ...
- 十一天 python操作rabbitmq、redis
1.启动rabbimq.mysql 在""运行""里输入services.msc,找到rabbimq.mysql启动即可 2.启动redis 管理员进入cmd, ...
- python操作rabbitmq、redis
1.启动rabbimq.mysql 在“”运行“”里输入services.msc,找到rabbimq.mysql启动即可 2.启动redis 管理员进入cmd,进入redis所在目录,执行redis- ...
- Python操作RabbitMQ
RabbitMQ介绍 RabbitMQ是一个由erlang开发的AMQP(Advanced Message Queue )的开源实现的产品,RabbitMQ是一个消息代理,从“生产者”接收消息并传递消 ...
随机推荐
- ARM伪指令
1.伪指令是什么 ARM伪指令不是ARM指令集中的指令,只是为了编程方便人们定义了伪指令. 在汇编时这些指令将会被等效的ARM指令或arm指令的组合代替. 编程时可以像其他ARM指令一样使用伪指令,区 ...
- HDU 5441 Travel(并查集+统计节点个数)
http://acm.hdu.edu.cn/showproblem.php?pid=5441 题意:给出一个图,每条边有一个距离,现在有多个询问,每个询问有一个距离值d,对于每一个询问,计算出有多少点 ...
- nodejs的dependency.md
dependency和devDependency的区别 package-a --- package-b (dependency) --- | --- package-c (devDependency) ...
- 批量Excel数据导入Oracle数据库
由于一直基于Oracle数据库上做开发,因此常常会需要把大量的Excel数据导入到Oracle数据库中,其实如果从事SqlServer数据库的开发,那么思路也是一样的,本文主要介绍如何导入Excel数 ...
- JAVA 面向对象中的多态
多态是继封装.继承之后,面向对象的第三大特性. 现实事物经常会体现出多种形态,如学生,学生是人的一种,则一个具体的同学张三既是学生也是人,即出现两种形态. Java作为面向对象的语言,同样可以描述一个 ...
- 越来越“简单”的Java
Java,20岁了.从我写下第一行Java代码,迄今已有十余年了,眼见Java——这个当年刚刚找到自己成长方向的懵懂少年,成长为如今当之无愧的业界王者.它已拥有世界上最庞大的开发者社区,以及无可匹敌的 ...
- VS2010.STL::list的一个bug
1.ParameterAnswer_Parse(...) 下 FlistParameterOffset.clear(); 出错(list<DWORD>.clear()) (https:// ...
- vue 定义全局变量在一个组件内引用
第一步: 第二步: 第三步: ok!!完了,当然了,你也可以在 main.js里面全局引用,然后用原型链挂在vue上面,用this的方法去获取!!
- 在dos输入pybot显示不是内部命令,或者显示chromedriver.exe要加入到path中?
在dos输入pybot显示不是内部命令,或者显示chromedriver.exe要加入到path中? 一直使用robot framework编写脚本,结果有一天输入 pybot XXXX.robot ...
- 主元素问题 Majority Element
2018-09-23 13:25:40 主元素问题是一个非常经典的问题,一般来说,主元素问题指的是数组中元素个数大于一半的数字,显然这个问题可以通过遍历计数解决,时间复杂度为O(n),空间复杂度为O( ...