Of course our child likes walking in a zoo. The zoo has n areas, that are numbered from 1 to n. The i-th area contains ai animals in it. Also there are m roads in the zoo, and each road connects two distinct areas. Naturally the zoo is connected, so you can reach any area of the zoo from any other area using the roads.

Our child is very smart. Imagine the child want to go from area p to area q. Firstly he considers all the simple routes from p to q. For each route the child writes down the number, that is equal to the minimum number of animals among the route areas. Let's denote the largest of the written numbers as f(p, q). Finally, the child chooses one of the routes for which he writes down the value f(p, q).

After the child has visited the zoo, he thinks about the question: what is the average value of f(p, q) for all pairs p, q (p ≠ q)? Can you answer his question?

Input

The first line contains two integers n and m (2 ≤ n ≤ 105; 0 ≤ m ≤ 105). The second line contains n integers: a1, a2, ..., an (0 ≤ ai ≤ 105). Then follow m lines, each line contains two integers xi and yi (1 ≤ xi, yi ≤ n; xi ≠ yi), denoting the road between areas xi and yi.

All roads are bidirectional, each pair of areas is connected by at most one road.

Output

Output a real number — the value of .

The answer will be considered correct if its relative or absolute error doesn't exceed 10 - 4.

Examples
Input
4 3
10 20 30 40
1 3
2 3
4 3
Output
16.666667
Input
3 3
10 20 30
1 2
2 3
3 1
Output
13.333333
Input
7 8
40 20 10 30 20 50 40
1 2
2 3
3 4
4 5
5 6
6 7
1 4
5 7
Output
18.571429
Note

Consider the first sample. There are 12 possible situations:

  • p = 1, q = 3, f(p, q) = 10.
  • p = 2, q = 3, f(p, q) = 20.
  • p = 4, q = 3, f(p, q) = 30.
  • p = 1, q = 2, f(p, q) = 10.
  • p = 2, q = 4, f(p, q) = 20.
  • p = 4, q = 1, f(p, q) = 10.

Another 6 cases are symmetrical to the above. The average is .

Consider the second sample. There are 6 possible situations:

  • p = 1, q = 2, f(p, q) = 10.
  • p = 2, q = 3, f(p, q) = 20.
  • p = 1, q = 3, f(p, q) = 10.

Another 3 cases are symmetrical to the above. The average is .


  (Tag好像很吓人的样子,不过这个是两个解法的Tag取并)

  题目大意 定义一条路径的权为这条路径所有经过点的点权的最小值,无向连通图中任意不同的两点的"距离"为这两点间所有简单路径中最大的权。给定一个无向连通图,求它的任意不同的两点间的"距离"的平均值。

  显然你需要求出任意不同的两点间"距离"的和,所以你需要在图上进行路径统计。

  然而表示并不会,所以我们先把问题放在树上,然后再考虑推广到图上。

  对于树上路径统计的问题常用算(套)法(路)->树分治。由于不会边分只会点分,所以现在考虑计算经过重心的所有路径的权和。

  根据常用点分套路,肯定需要计算每个子树中每个点到这个子树的根的"距离",然后对当前分治的树进行统计,然后减去每个子树内部的不合法路径(不是简单路径)。

  这个统计很简单,你只需排个序,然后你就可以知道每个点到哪些点的"距离"是自己到所在子树的根的"距离"。

  于是便可以在的时间内水掉这个子任务。

  现在考虑推广的问题(其实这也不算推广吧。。反向搜索比较合适吧)。仔细看题,然后用贪心的思想你可以得到一个结论:任意两个不同点之间的最优路径一定在最大生成树上。

  所以你只需要用Kruskal先建出最大生成树(边权是它连接的两个点的点权的最小值),然后再进行点分治就好了。(下面是编程复杂度的点分治的代码)

Code

 /**
* Codeforces
* Problem#437D
* Accepted
* Time:202ms
* Memory:15452k
*/
#include <bits/stdc++.h>
using namespace std;
#define smax(a, b) a = max(a, b)
typedef bool boolean; typedef class union_found {
public:
int *f; union_found() { }
union_found(int n) {
f = new int[(n + )];
for(int i = ; i <= n; i++)
f[i] = i;
} int find(int x) {
return (f[x] == x) ? (x) : (f[x] = find(f[x]));
} void unit(int fa, int so) {
int ffa = find(fa);
int fso = find(so);
f[fso] = ffa;
} boolean isConnected(int a, int b) {
return find(a) == find(b);
}
}union_found; typedef class Edge1 {
public:
int u;
int v;
int w; boolean operator < (Edge1 b) const {
return w > b.w;
}
}Edge1; int n, m;
int *vals;
Edge1* es;
union_found uf;
vector<int> *g; inline void init() {
scanf("%d%d", &n, &m);
vals = new int[(n + )];
es = new Edge1[(m + )];
g = new vector<int>[(n + )];
for(int i = ; i <= n; i++)
scanf("%d", vals + i);
for(int i = ; i <= m; i++)
scanf("%d%d", &es[i].u, &es[i].v), es[i].w = min(vals[es[i].u], vals[es[i].v]);
} boolean *vis;
int *siz;
long long sum = ;
void tree_dp(int node, int fa) {
siz[node] = ;
for(int i = ; i < (signed)g[node].size(); i++) {
int& e = g[node][i];
if(e == fa || vis[e]) continue;
tree_dp(e, node);
siz[node] += siz[e];
}
} void getG(int node, int fa, int all, int& mins, int& G) {
int msiz = ;
for(int i = ; i < (signed)g[node].size(); i++) {
int& e = g[node][i];
if(e == fa || vis[e]) continue;
getG(e, node, all, mins, G);
smax(msiz, siz[e]);
}
smax(msiz, all - siz[node]);
if(msiz < mins) mins = msiz, G = node;
} int cnt;
int* dis;
void dfs(int node, int fa, int d) {
dis[++cnt] = d;
// printf("%d: %d\n", node, d);
for(int i = ; i < (signed)g[node].size(); i++) {
int& e = g[node][i];
if(e == fa || vis[e]) continue;
dfs(e, node, min(d, vals[e]));
}
} long long calc(int l, int r, int lim) {
long long rt = ;
sort(dis + l, dis + r + );
for(int i = l; i <= r; i++) {
rt += (r - i) * 1LL * min(dis[i], lim);
// printf("%d %d %d %d %d\n", l, r, i, dis[i], rt);
}
return rt;
} void dividing(int node) {
int mins = , G;
tree_dp(node, );
if(siz[node] == ) return;
getG(node, , siz[node], mins, G);
// cout << G << endl;
cnt = ;
vis[G] = true;
for(int i = , l; i < (signed)g[G].size(); i++) {
int& e = g[G][i];
if(vis[e]) continue;
l = cnt;
dfs(e, G, vals[e]);
// cout << l << " " << e << " " << cnt << endl;
sum -= calc(l + , cnt, vals[G]);
// cout << cnt << endl;
}
dis[++cnt] = vals[G];
sum += calc(, cnt, vals[G]);
// cout << sum << endl;
for(int i = , l; i < (signed)g[G].size(); i++) {
int& e = g[G][i];
if(vis[e]) continue;
dividing(g[G][i]);
}
} inline void solve() {
sort(es + , es + m + );
uf = union_found(n);
int fin = ;
for(int i = ; i <= m && fin < n; i++) {
if(!uf.isConnected(es[i].u, es[i].v)) {
uf.unit(es[i].u, es[i].v);
g[es[i].u].push_back(es[i].v);
g[es[i].v].push_back(es[i].u);
// printf("connect %d %d\n", es[i].u, es[i].v);
fin++;
}
}
vis = new boolean[(n + )];
siz = new int[(n + )];
dis = new int[(n + )];
memset(vis, false, sizeof(boolean) * (n + ));
dividing();
long long c = n * 1LL * (n - );
printf("%.9lf", (sum << ) * 1.0 / c);
} int main() {
init();
solve();
return ;
}

The Child and Zoo(Point Division)

  不得不说贪心世界博大精深。下面将用一个神奇的贪心将时间复杂度去掉一个log。

  在跑最大生成树的时候其实就可以直接出答案了。对于一条边将两个原本不连通的连通块连接起来,因为是第一次连接,所以这条边在最大生成树上,这条边对总和有贡献。那么会贡献多少次呢?乘法原理算一算,就是两边点数的乘积(两个联通块内的边的权值都比它大,所以一个点在其中的一个联通块中,另一个点在另外一个联通块中,它们的"距离"就是这条边的权值)。

  于是编程复杂度成功下降到O(能1a)。

Code

 /**
* Codeforces
* Problem#437D
* Accepted
* Time: 62ms
* Memory: 4408k
*/
#include <bits/stdc++.h>
using namespace std;
typedef bool boolean; typedef class union_found {
public:
int *f;
int *s; union_found() { }
union_found(int n) {
f = new int[(n + )];
s = new int[(n + )];
for(int i = ; i <= n; i++)
f[i] = i, s[i] = ;
} int find(int x) {
return (f[x] == x) ? (x) : (f[x] = find(f[x]));
} void unit(int fa, int so) {
int ffa = find(fa);
int fso = find(so);
f[fso] = ffa;
s[ffa] += s[fso];
} boolean isConnected(int a, int b) {
return find(a) == find(b);
}
}union_found; typedef class Edge {
public:
int u;
int v;
int w; boolean operator < (Edge b) const {
return w > b.w;
}
}Edge; int n, m;
int *vals;
Edge* es;
union_found uf; inline void init() {
scanf("%d%d", &n, &m);
vals = new int[(n + )];
es = new Edge[(m + )];
for(int i = ; i <= n; i++)
scanf("%d", vals + i);
for(int i = ; i <= m; i++)
scanf("%d%d", &es[i].u, &es[i].v), es[i].w = min(vals[es[i].u], vals[es[i].v]);
} long long sum = ;
inline void solve() {
sort(es + , es + m + );
uf = union_found(n);
int fin = ;
for(int i = ; i <= m && fin < n; i++) {
if(!uf.isConnected(es[i].u, es[i].v)) {
sum += uf.s[uf.find(es[i].u)] * 1LL * uf.s[uf.find(es[i].v)] * es[i].w;
uf.unit(es[i].u, es[i].v);
fin++;
}
}
long long c = n * 1LL * (n - );
printf("%.9lf", (sum << ) * 1.0 / c);
} int main() {
init();
solve();
return ;
}

Codeforces 437D The Child and Zoo - 树分治 - 贪心 - 并查集 - 最大生成树的更多相关文章

  1. Codeforces 437D The Child and Zoo(贪心+并查集)

    题目链接:Codeforces 437D The Child and Zoo 题目大意:小孩子去參观动物园,动物园分非常多个区,每一个区有若干种动物,拥有的动物种数作为该区的权值.然后有m条路,每条路 ...

  2. Codeforces 437D The Child and Zoo(并查集)

    Codeforces 437D The Child and Zoo 题目大意: 有一张连通图,每个点有对应的值.定义从p点走向q点的其中一条路径的花费为途径点的最小值.定义f(p,q)为从点p走向点q ...

  3. 【BZOJ4025】二分图(线段树分治,并查集)

    [BZOJ4025]二分图(线段树分治,并查集) 题面 BZOJ 题解 是一个二分图,等价于不存在奇环. 那么直接线段树分治,用并查集维护到达根节点的距离,只计算就好了. #include<io ...

  4. 【CF938G】Shortest Path Queries(线段树分治,并查集,线性基)

    [CF938G]Shortest Path Queries(线段树分治,并查集,线性基) 题面 CF 洛谷 题解 吼题啊. 对于每个边,我们用一个\(map\)维护它出现的时间, 发现询问单点,边的出 ...

  5. codeforces 437D The Child and Zoo

    time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...

  6. Dash Speed【好题,分治,并查集按秩合并】

    Dash Speed Online Judge:NOIP2016十联测,Claris#2 T3 Label:好题,分治,并查集按秩合并,LCA 题目描述 比特山是比特镇的飙车圣地.在比特山上一共有 n ...

  7. [BZOJ3038]上帝造题的七分钟2 树状数组+并查集

    考试的时候用了两个树状数组去优化,暴力修改,树状数组维护修改后区间差值还有最终求和,最后骗了40分.. 这道题有好多种做法,求和好说,最主要的是开方.这道题过的关键就是掌握一点:在数据范围内,最多开方 ...

  8. hdu 5458 Stability(树链剖分+并查集)

    Stability Time Limit: 3000/2000 MS (Java/Others)    Memory Limit: 65535/102400 K (Java/Others)Total ...

  9. 【loj6038】「雅礼集训 2017 Day5」远行 树的直径+并查集+LCT

    题目描述 给你 $n$ 个点,支持 $m$ 次操作,每次为以下两种:连一条边,保证连完后是一棵树/森林:询问一个点能到达的最远的点与该点的距离.强制在线. $n\le 3\times 10^5$ ,$ ...

随机推荐

  1. 连接mysql && ERROR 2003 (HY000): Can't connect to MySQL server on 'localhost' (10061)

    上一篇:mysql服务正在启动 mysql服务无法启动 && mysql启动脚本 mysql关闭脚本 此篇目编写一个核心目的: 1.mysql连接 先抛出一个问题 这是因为mysql服 ...

  2. CSU 1817 Bones’s Battery Submit(二分+Floyd)

    Bones's Battery Submit [题目链接]Bones's Battery Submit [题目类型]二分+Floyd &题意: 有n个点,m条边,从点ui到点vi的费电量是di ...

  3. HttpServletRequest常用方法

    1.获取客户机信息 getRequestURL:该方法返回客户端发出请求时的完整URL getRequestURI:该方法返回请求行中的资源名部分 getQueryString:该方法返回请求中的参数 ...

  4. java中,null值可以被强制转换为任何类型

    java中,null值可以被强制转换为任何类型

  5. HAProxy实现mysql负载均衡

    安装 yum install haproxy 修改配置 vi /etc/haproxy/haproxy.cfg   配置如下 global daemon nbproc 1 pidfile /var/r ...

  6. 面向对象的多态性(C++)

    以C++为例三大特效:封装.继承.多态,面向对象的编程语言都具有这些特性. 那么本节来谈谈多态性,尽量说的简单些容易理解! 多态什么意思?即运行时多态,以相同的方式处理不同类型的对象,产生不同的结果! ...

  7. WebStorage (1) 实例

    实例代码 <p>本页面每5秒刷新一下,这是您第<mark></mark>次进入本页面!</p> <script> if (window.lo ...

  8. codeoforces 975B Mancala

    题意: 一个游戏,有14个洞,每个洞中开始有若干个球或者没有球. 每一步的操作,是将一个洞中的所有球取出,再逆时针放一个球到它的后一个洞,后两个洞,后三个洞....如果当前放的是最后一个,那么下一个又 ...

  9. cmd强行终止进程

    找到某个进程对应的端口号 Netstat -ano|findstr  8080 通过ip 地址,强行    taskkill /PID 11048 但有的情况下终止不了,需要通过下列方式进行 task ...

  10. modelform的简介

    Form介绍 我们之前在HTML页面中利用form表单向后端提交数据时,都会写一些获取用户输入的标签并且用form标签把它们包起来. 与此同时我们在好多场景下都需要对用户的输入做校验,比如校验用户是否 ...