http://noi.openjudge.cn/ch0206/7627/

描述

最近XX公司举办了一个奇怪的比赛:鸡蛋硬度之王争霸赛。参赛者是来自世界各地的母鸡,比赛的内容是看谁下的蛋最硬,更奇怪的是XX公司并不使用什么精密仪器来测量蛋的硬度,他们采用了一种最老土的办法--从高度扔鸡蛋--来 测试鸡蛋的硬度,如果一次母鸡下的蛋从高楼的第a层摔下来没摔破,但是从a+1层摔下来时摔破了,那么就说这只母鸡的鸡蛋的硬度是a。你当然可以找出各种 理由说明这种方法不科学,比如同一只母鸡下的蛋硬度可能不一样等等,但是这不影响XX公司的争霸赛,因为他们只是为了吸引大家的眼球,一个个鸡蛋从100 层的高楼上掉下来的时候,这情景还是能吸引很多人驻足观看的,当然,XX公司也绝不会忘记在高楼上挂一条幅,写上“XX公司”的字样--这比赛不过是XX 公司的一个另类广告而已。 
勤于思考的小A总是能从一件事情中发现一个数学问题,这件事也不例外。“假如有很多同样硬度的鸡蛋,那么我可以用二分的办法用最少的次数测出鸡蛋 的硬度”,小A对自己的这个结论感到很满意,不过很快麻烦来了,“但是,假如我的鸡蛋不够用呢,比如我只有1个鸡蛋,那么我就不得不从第1层楼开始一层一 层的扔,最坏情况下我要扔100次。如果有2个鸡蛋,那么就从2层楼开始的地方扔……等等,不对,好像应该从1/3的地方开始扔才对,嗯,好像也不一定 啊……3个鸡蛋怎么办,4个,5个,更多呢……”,和往常一样,小A又陷入了一个思维僵局,与其说他是勤于思考,不如说他是喜欢自找麻烦。 
好吧,既然麻烦来了,就得有人去解决,小A的麻烦就靠你来解决了:)


输入

输入包括多组数据,每组数据一行,包含两个正整数n和m(1<=n<=100,1<=m<=10),其中n表示楼的高度,m表示你现在拥有的鸡蛋个数,这些鸡蛋硬度相同(即它们从同样高的地方掉下来要么都摔碎要么都不碎),并且小于等于n。你可以假定硬度为x的鸡蛋从高度小于等于x的地方摔无论如何都不会碎(没摔碎的鸡蛋可以继续使用),而只要从比x高的地方扔必然会碎。
对每组输入数据,你可以假定鸡蛋的硬度在0至n之间,即在n+1层扔鸡蛋一定会碎。输出对于每一组输入,输出一个整数,表示使用最优策略在最坏情况下所需要的扔鸡蛋次数。样例输入

100 1
100 2

样例输出

100
14

提示:最优策略指在最坏情况下所需要的扔鸡蛋次数最少的策略。
如果只有一个鸡蛋,你只能从第一层开始扔,在最坏的情况下,鸡蛋的硬度是100,所以需要扔100次。如果采用其他策略,你可能无法测出鸡蛋的硬度(比如你第一次在第二层的地方扔,结果碎了,这时你不能确定硬度是0还是1),即在最坏情况下你需要扔无限次,所以第一组数据的答案是100。

  芒果君:看完题目完全不知道它在说什么好不好OTZ 提示根本没有用好不好OTZ 看不出来是dp好不好OTZ 那么我们就用dp尝试写一写,先把只有一个鸡蛋的情况进行特判处理,接下来就用鸡蛋的个数作为阶段划分的依据,从1楼到j楼寻找最优解,f[j][i]表示j层楼用i个鸡蛋的解,枚举当前层k,状态转移方程为:f[j][i]=min(f[j][i],max(f[j-k][i],f[k-1][i-1])+1);那么有两种情况,摔碎和没摔碎分别是向下和向上找的解加一,考虑最坏情况用max函数。

我没有想到这道题居然还能划分子问题啊。

 #include<cstdio>
#include<algorithm>
using namespace std;
int f[][],n,m,i,j,k;
int main()
{
for(i=;i<=;++i)
{
f[i][]=i;
}
for(i=;i<=;++i)
{
for(j=;j<=;++j)
{
f[j][i]=;
for(k=;k<=j;++k)
{
f[j][i]=min(f[j][i],max(f[j-k][i],f[k-][i-])+);
}
}
}
while((scanf("%d%d",&n,&m))!=EOF)
{
printf("%d\n",f[n][m]);
}
return ;
}

noi openjudge7627:鸡蛋的硬度的更多相关文章

  1. openjudge7627 鸡蛋的硬度

    描述 最近XX公司举办了一个奇怪的比赛:鸡蛋硬度之王争霸赛.参赛者是来自世 界各地的母鸡,比赛的内容是看谁下的蛋最硬,更奇怪的是XX公司并不使用什么精密仪器来测量蛋的硬度,他们采用了一种最老土的办法- ...

  2. noi 7627 鸡蛋的硬度

    题目链接:http://noi.openjudge.cn/ch0206/7627/ 题目讲的二分其实是一个误导, d(i,j),表示当前最优策略时,最坏的情况下: 有 J 个鸡蛋,I 个可以怀疑的楼层 ...

  3. OpenJudge 7627 鸡蛋的硬度

    描述 最近XX公司举办了一个奇怪的比赛:鸡蛋硬度之王争霸赛.参赛者是来自世 界各地的母鸡,比赛的内容是看谁下的蛋最硬,更奇怪的是XX公司并不使用什么精密仪器来测量蛋的硬度,他们采用了一种最老土的办法- ...

  4. COJN 0585 800604鸡蛋的硬度

    800604鸡蛋的硬度 难度级别:B: 运行时间限制:1000ms: 运行空间限制:51200KB: 代码长度限制:2000000B 试题描述 最近XX公司举办了一个奇怪的比赛:鸡蛋硬度之王争霸赛.参 ...

  5. 【noi 2.6_7627】鸡蛋的硬度(DP)

    题意:其中n表示楼的高度,m表示你现在拥有的鸡蛋个数. 解法:f[i][j]表示 i 层楼有 j 个鸡蛋时,至少要扔多少次.3重循环,k为测试的楼层,分这时扔下去的鸡蛋碎和不碎的情况.要注意初始化. ...

  6. U4699 鸡蛋

    U4699 鸡蛋 0通过 37提交 题目提供者飞翔 标签 难度尚无评定 提交 最新讨论 暂时没有讨论 题目背景 调皮的kkk准备恶搞他的同学兼朋友——你! 题目描述 kkk准备从楼上扔鸡蛋下来砸在lz ...

  7. 北京培训记day4

    智商题QAQ-- T1:求>=n的最小素数,n<=10^18 暴力枚举n-n+100,miller-rabin筛法 T2:给定一个01矩阵,每次选择一个1并将(x,y)到(1,1)颜色反转 ...

  8. 小圣求职记B:总集篇

    1. 搜狐sohu 搜狐在正式招聘前邀请了部分应聘者到武汉研发中心开座谈会(因此简历尽量早投,机会多些),有研发的也有产品的,40人左右,座谈会期间介绍了搜狐汽车.北京研发中心.武汉研发中心和搜狐媒体 ...

  9. Balls(poj 3783)

    The classic Two Glass Balls brain-teaser is often posed as: “Given two identical glass spheres, you ...

随机推荐

  1. JavaScript里的递增"++"和递减"--"

    递增"++",表示在原来的数值上+1 tips:比如a=1,那么++a或者a++都等于2. 递减"--",表示再原来的数值上-1,前置/后置递减计算过程同递增 ...

  2. 011_9*9 乘法表(编写 shell 脚本,打印 9*9 乘法表)

    #!/bin/bashfor i in `seq 9`do    for j in `seq $i`        do           echo -n "$i*$j=$[i*j] &q ...

  3. [POI2008]BLO-Blockade 割点

    [POI2008]BLO-Blockade 割点 题面 容易想到用\(\text{Tarjan}\)求割点.对于非割点,会损失\(2\times(n-1)\)次访问(注意是互相访问,所以要乘2):对于 ...

  4. 线段树QWQ

    一直没碰过线段树,个人认为好长好难,不过这几天做题遇到了裸的线段树的题,TAT. 线段树我理解就是把二叉树的左右节点现在分别看成是两个区间. 那么现在这两个区间的端点怎么存放?怎么能够把这个区间里的数 ...

  5. CF1030C

    CF1030C 题意: 给你一个数字,问能否拆分成k段,使得每一段的每一位数字相加结果相等. 解法: 考虑数位DP. 暴力按位考虑每一位是否满足条件 CODE: #include<cstdio& ...

  6. 浅谈 es6 箭头函数, reduce函数介绍

    今天来谈一下箭头函数, es6的新特性 首先我们来看下箭头函数长什么样子, let result = (param1, param2) => param1+param2; 上述代码 按照以前书写 ...

  7. go结构体的方法和普通函数

    package main import ( "fmt" "math" ) type vertex struct { X, Y float64 } //值接收者是 ...

  8. centos7中oracle数据库安装和卸载

    参考: 完全命令行安装(验证可行):https://jingyan.baidu.com/article/90895e0f29c92164ec6b0bd1.html 存在疑问:是否需要jdk的配置(因为 ...

  9. OpenResty之指令与常用API

    1. 指令 通过 Lua 编写 Nginx 脚本的基本构建块是指令.指令常用于指定 Lua 代码是几时执行的以及如何使用运行的结果.下图展示了指令执行的顺序. lua_capture_error_lo ...

  10. 深入探索REST(2):理解本真的REST架构风格

    文章转载地址:https://www.infoq.cn/article/understanding-restful-style/,如引用请标注文章原地址 引子 在移动互联网.云计算迅猛发展的今天,作为 ...