之前博文中讲解过kalman滤波的原理和应用,这里用一个跟踪鼠标的例程来演示怎么在opencv里用自带的kalman函数进行目标跟踪,文章的内容对做图像跟踪有借鉴意义。文章主要是网络资源进行整理和简单解读,来源见参考。

运动模型的建立:

在进入kalman跟踪之前,首先要建立鼠标运动的模型,至少有两个状态变量:鼠标位置x,y,也可以是四个状态变量:位置x,y和速度vx,vy。两个测量变量:鼠标位置x,y。由于鼠标的运动是个随机运动,并没有一个精确复杂的数学模型。在粒子滤波博文中,也做过图像跟踪,跟那里程序类似的是,鼠标的位置主要通过上一时刻的位置再叠加一个随机噪声来预测。

opencv kalman代码:

例程主要分为两部分,第一部分是针对目标跟踪而封装好的的一个kalman滤波器类,方便以后扩展到其他程序中。第二部分是使用之前封装好的kalman目标跟踪类进行鼠标跟踪。

第一部分:封装好的用于目标跟踪的滤波器类

# -*- coding: utf-8 -*-
'''
kalman2d - 2D Kalman filter using OpenCV Based on http://jayrambhia.wordpress.com/2012/07/26/kalman-filter/ Copyright (C) 2014 Simon D. Levy This code is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This code is distributed in the hope that it will be useful, MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details. You should have received a copy of the GNU Lesser General Public License
along with this code. If not, see <http://www.gnu.org/licenses/>.
''' from cv2 import cv class Kalman2D(object):
'''
A class for 2D Kalman filtering
''' def __init__(self, processNoiseCovariance=1e-4, measurementNoiseCovariance=1e-1, errorCovariancePost=0.1):
'''
Constructs a new Kalman2D object.
For explanation of the error covariances see
http://en.wikipedia.org/wiki/Kalman_filter
'''
# 状态空间:位置--2d,速度--2d
self.kalman = cv.CreateKalman(4, 2, 0)
self.kalman_state = cv.CreateMat(4, 1, cv.CV_32FC1)
self.kalman_process_noise = cv.CreateMat(4, 1, cv.CV_32FC1)
self.kalman_measurement = cv.CreateMat(2, 1, cv.CV_32FC1) for j in range(4):
for k in range(4):
self.kalman.transition_matrix[j,k] = 0
self.kalman.transition_matrix[j,j] = 1
#加入速度 x = x + vx, y = y + vy
# 1,0,1,0, 0,1,0,1, 0,0,1,0, 0,0,0,1
#如果把下面两句注释掉,那么位置跟踪kalman滤波器的状态模型就是没有使用速度信息
# self.kalman.transition_matrix[0, 2]=1
# self.kalman.transition_matrix[1, 3]=1 cv.SetIdentity(self.kalman.measurement_matrix)
#初始化带尺度的单位矩阵
cv.SetIdentity(self.kalman.process_noise_cov, cv.RealScalar(processNoiseCovariance))
cv.SetIdentity(self.kalman.measurement_noise_cov, cv.RealScalar(measurementNoiseCovariance))
cv.SetIdentity(self.kalman.error_cov_post, cv.RealScalar(errorCovariancePost)) self.predicted = None
self.esitmated = None def update(self, x, y):
'''
Updates the filter with a new X,Y measurement
''' self.kalman_measurement[0, 0] = x
self.kalman_measurement[1, 0] = y self.predicted = cv.KalmanPredict(self.kalman)
self.corrected = cv.KalmanCorrect(self.kalman, self.kalman_measurement) def getEstimate(self):
'''
Returns the current X,Y estimate.
''' return self.corrected[0,0], self.corrected[1,0] def getPrediction(self):
'''
Returns the current X,Y prediction.
''' return self.predicted[0,0], self.predicted[1,0]

代码详细解读:

这部分程序中,最主要的kalman滤波器的创建和使用。

self.kalman = cv.CreateKalman(4, 2, 0)

该句命令为创建kalman滤波器,使用方法如下:

CreateKalman(dynam_params, measure_params, control_params=0)

它有3个输入参数,dynam_params:状态空间的维数;measure_param:测量值的维数;control_params:控制向量的维数,默认为0。由于这里该模型中并没有控制变量,因此也为0。

cv.SetIdentity(self.kalman.process_noise_cov, cv.RealScalar(processNoiseCovariance))
cv.SetIdentity(self.kalman.measurement_noise_cov, cv.RealScalar(measurementNoiseCovariance))
cv.SetIdentity(self.kalman.error_cov_post, cv.RealScalar(errorCovariancePost))

代码中这三句为设定过程噪声协方差矩阵、测量噪声协方差矩阵、以及初始化后验误差协方差矩阵。

       创建完成以后,就只等待在主函数中调用,进行预测和更新了。

注意:在使用过程中,为达到好的跟踪效果主要调节下示参数中的前两个参数processNosieCovariance和measurementNoiseCovariance

__init__(self, processNoiseCovariance=1e-2, measurementNoiseCovariance=1e-1, errorCovariancePost=0.1)

第二部分:鼠标跟踪主程序

#!/usr/bin/env python

'''
kalman_mousetracker.py - OpenCV mouse-tracking demo using 2D Kalman filter Adapted from http://www.morethantechnical.com/2011/06/17/simple-kalman-filter-for-tracking-using-opencv-2-2-w-code/ Copyright (C) 2014 Simon D. Levy This code is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
This code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details. You should have received a copy of the GNU Lesser General Public License
along with this code. If not, see <http://www.gnu.org/licenses/>.
''' # This delay will affect the Kalman update rate
DELAY_MSEC = 20 # Arbitrary display params
WINDOW_NAME = 'Kalman Mousetracker [ESC to quit]'
WINDOW_SIZE = 500 import cv2
import numpy as np
from sys import exit from kalman2d import Kalman2D class MouseInfo(object):
'''
A class to store X,Y points
''' def __init__(self): self.x, self.y = -1, -1 def __str__(self): return '%4d %4d' % (self.x, self.y) def mouseCallback(event, x, y, flags, mouse_info):
'''
Callback to update a MouseInfo object with new X,Y coordinates
''' mouse_info.x = x
mouse_info.y = y def drawCross(img, center, r, g, b):
'''
Draws a cross a the specified X,Y coordinates with color RGB
''' d = 5
t = 2 color = (r, g, b) ctrx = center[0]
ctry = center[1] cv2.line(img, (ctrx - d, ctry - d), (ctrx + d, ctry + d), color, t, cv2.CV_AA)
cv2.line(img, (ctrx + d, ctry - d), (ctrx - d, ctry + d), color, t, cv2.CV_AA) def drawLines(img, points, r, g, b):
'''
Draws lines
''' cv2.polylines(img, [np.int32(points)], isClosed=False, color=(r, g, b)) def newImage():
'''
Returns a new image
''' return np.zeros((500,500,3), np.uint8) if __name__ == '__main__': # Create a new image in a named window
img = newImage()
cv2.namedWindow(WINDOW_NAME) # Create an X,Y mouse info object and set the window's mouse callback to modify it
mouse_info = MouseInfo()
cv2.setMouseCallback(WINDOW_NAME, mouseCallback, mouse_info) # Loop until mouse inside window
while True: if mouse_info.x > 0 and mouse_info.y > 0:
break cv2.imshow(WINDOW_NAME, img)
if cv2.waitKey(1) == 27:
exit(0) # These will get the trajectories for mouse location and Kalman estiamte
measured_points = []
kalman_points = [] # Create a new Kalman2D filter and initialize it with starting mouse location
kalman2d = Kalman2D() # Loop till user hits escape
while True: # Serve up a fresh image
img = newImage() # Grab current mouse position and add it to the trajectory
measured = (mouse_info.x, mouse_info.y)
measured_points.append(measured) # Update the Kalman filter with the mouse point
kalman2d.update(mouse_info.x, mouse_info.y) # Get the current Kalman estimate and add it to the trajectory
estimated = [int (c) for c in kalman2d.getEstimate()]
kalman_points.append(estimated) # Display the trajectories and current points
drawLines(img, kalman_points, 0, 255, 0)
drawCross(img, estimated, 255, 255, 255)
drawLines(img, measured_points, 255, 255, 0)
drawCross(img, measured, 0, 0, 255) # Delay for specified interval, quitting on ESC
cv2.imshow(WINDOW_NAME, img)
if cv2.waitKey(DELAY_MSEC) == 27:
break

运行程序就能看到效果。

值得一提的是:状态模型中使不使用速度变量,效果是不一样的。

状态模型中加入速度变量:

不加入速度变量:

调节之前提到的参数,得到最好的效果。

最后,读者可以将本文中的程序稍作修改实现粒子滤波博文中视频跟踪穿红衣女子,视频可以在粒子滤波博文代码材料中找到,祝好运。

(转载请注明作者和出处:http://blog.csdn.net/heyijia0327 未经允许请勿用于商业用途)

reference:

1.鼠标跟踪C++例程原出处

2.Simon D. Levy将上述例程修改为python代码

3.目标跟踪模型

4.opencv官方资料1

5.opencv官方资料2:该官方链接中有一个跟踪旋转点的c例程

python + opencv: kalman 跟踪的更多相关文章

  1. linux/ubuntu下最简单好用的python opencv安装教程 ( 解决 imshow, SIFT, SURF, CSRT使用问题)

    希望这篇文章能彻底帮你解决python opencv安装和使用中的常见问题. 懒人请直奔这一节, 一条命令安装 opencv 使用python-opencv常用的问题 在linux中使用python版 ...

  2. 搭建基于python +opencv+Beautifulsoup+Neurolab机器学习平台

    搭建基于python +opencv+Beautifulsoup+Neurolab机器学习平台 By 子敬叔叔 最近在学习麦好的<机器学习实践指南案例应用解析第二版>,在安装学习环境的时候 ...

  3. .NET + OpenCV & Python + OpenCV 配置

    最近需要做一个图像识别的GUI应用,权衡了Opencv+ 1)QT,2)Python GUI,3).NET后选择了.NET... 本文给出C#+Opencv和Python+Opencv的相应参考,节省 ...

  4. RPi 2B python opencv camera demo example

    /************************************************************************************** * RPi 2B pyt ...

  5. Python+OpenCV图像处理(一)

    Python+OpenCV图像处理(一): 读取,写入和展示图片 调用摄像头拍照 调用摄像头录制视频 1. 读取.写入和展示图片 图像读入:cv2.imread() 使用函数cv2.imread() ...

  6. python opencv show图片,debug技巧

    debug的时候可以直接把图片画出来debug. imshow函数就是python opencv的展示图片的函数,第一个是你要起的图片名,第二个是图片本身.waitKey函数是用来展示图片多久的,默认 ...

  7. Python+OpenCV图像处理(一)——读取显示一张图片

    先在此处先声明,后面学习python+opencv图像处理时均参考这位博主的博文https://blog.csdn.net/u011321546/article/category/7495016/2? ...

  8. Python+opencv 图像拼接

    1.http://www.cnblogs.com/skyfsm/p/7411961.html ,给出了很好地拼接算法实现 2.由于不是Python的,所以简单做了一些翻译转成Python+opencv ...

  9. 【python+opencv】直线检测+圆检测

     Python+OpenCV图像处理—— 直线检测 直线检测理论知识: 1.霍夫变换(Hough Transform) 霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进 ...

随机推荐

  1. Python acos() 函数

    描述 acos() 返回x的反余弦弧度值. 语法 以下是 acos() 方法的语法: import math math.acos(x) 注意:acos()是不能直接访问的,需要导入 math 模块,然 ...

  2. 博客目录之C#

    C# BackgroundWorker的Bug??? C# BeginInvoke和EndInvoke方法 c# 高效的线程安全队列ConcurrentQueue C# ManualResetEven ...

  3. python标准库介绍——26 getopt 模块详解

    ==getopt 模块== ``getopt`` 模块包含用于抽出命令行选项和参数的函数, 它可以处理多种格式的选项. 如 [Example 2-23 #eg-2-23] 所示. 其中第 2 个参数指 ...

  4. python标准库介绍——22 UserList 模块详解

    ==UserList 模块== ``UserList`` 模块包含了一个可继承的列表类 (事实上是对内建列表类型的 Python 封装). 在 [Example 2-16 #eg-2-16] 中, / ...

  5. .NET设计模式(4):建造者模式(Builder Pattern)(转载)

    概述 在 软件系统中,有时候面临着“一个复杂对象”的创建工作,其通常由各个部分的子对象用一定的算法构成:由于需求的变化,这个复杂对象的各个部分经常面临着剧 烈的变化,但是将它们组合在一起的算法确相对稳 ...

  6. mvn test 执行testng测试用例

    maven项目,把testng用例防止test目录下,配置pom.xml 文件如下,执行mvn test 能自动执行testng里面的用例 <project xmlns="http:/ ...

  7. JEECG图表配置说明

    图表配置可以做什么? 图表配置可以通过在线配置,无需编写代码生成图形报表页面.使用highcharts.js实现,可以运行在任何现代浏览器,包括移动终端以及IE6.目前支持曲线图.柱状图等基础报表. ...

  8. MySQL Study之--MySQL下图形工具的使用(MySQL Administrator)

    MySQL Study之--MySQL下图形工具的使用(MySQL Administrator) 系统环境:     操作系统: Windows  7(64) 下载地址:http://www.soft ...

  9. WCF入门学习2-控制台做为宿主

    Step1.创建一个WCF类库和一个控制台程序. Step2.引用WCF项目. Step3.添加这两个引用. //本段代码出处 无废话WCF入门教程系列 Uri baseAddress = new U ...

  10. xilinx 官方技术资料

    http://china.xilinx.com/support/index.html/content/xilinx/zh/supportNav/ip_documentation.html