4361: isn

https://lydsy.com/JudgeOnline/problem.php?id=4361

分析:

  dp+容斥。

  首先计算出每个长度有多少种子序列是非降的。这一步可以$n^2logn$求出。dp[i][j]表示长度为i的结尾为j的方案数,用树状数组维护。

  然后考虑容斥计算答案。长度为i的序列的总共的方案数设为sum[i],加上所有的操作情况,就是$sum[i] \times (n - i) !$。但是这所有的操作情况中,可能在某个时刻非降了,就要停止。所以减去不合法的。

  长度为i的序列,在前一个时刻长度一定是i+1,经过一步多余的操作后长度变成了i,(长度i+1的时候已经合法了)。那么枚举长度i+1时的所有操作情况的序列,再减去一次就是长度为i的答案。因为枚举的是i+1所有的操作情况,可能会出现长度i+1的序列也是不合法的,此时照常减去就行,因为长度为i的序列中,也包含了长度为i+2的时候就合法了的序列(就是因为乘上了那个阶乘),多进行了两步操作后到达的现在的状态,同样包含i+3,i+4...

  $Ans=\sum_{i=1}^n(sum[i]\times (n-i)!-sum[i+1]\times (n-i-1)!\times (i+1))$

  另一种更为简单易懂的方法

代码:

 #include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<iostream>
#include<cctype>
#include<set>
#include<vector>
#include<queue>
#include<map>
#define fi(s) freopen(s,"r",stdin);
#define fo(s) freopen(s,"w",stdout);
using namespace std;
typedef long long LL; inline int read() {
int x=,f=;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-;
for(;isdigit(ch);ch=getchar())x=x*+ch-'';return x*f;
} const int N = ;
const LL mod = 1e9 + ; int a[N], disc[N], sum[N], n;
LL f[N][N], fac[N]; #define add(a,b) (a += b), a > mod ? (a -= mod) : a struct BIT{
int sum[N];
void update(int p,int v) {
for (; p <= n; p += (p & (-p))) add(sum[p], v);
}
int query(int p) {
int ans = ;
for (; p; p -= (p & (-p))) add(ans, sum[p]);
return ans;
}
}bit[N]; int main() {
n = read();
for (int i = ; i <= n; ++i) a[i] = read(), disc[i] = a[i]; int cnt = ;
sort(disc + , disc + n + );
for (int i = ; i <= n; ++i) if (disc[i] != disc[cnt]) disc[++cnt] = disc[i];
for (int i = ; i <= n; ++i) a[i] = lower_bound(disc + , disc + cnt + , a[i]) - disc; for (int i = ; i <= n; ++i) f[][i] = 1ll;
for (int i = ; i <= n; ++i) {
bit[i - ].update(a[i - ], f[i - ][i - ]);
for (int j = i; j <= n; ++j) {
f[i][j] = bit[i - ].query(a[j]);
bit[i - ].update(a[j], f[i - ][j]);
}
} LL ans = ;
fac[] = ;
for (int i = ; i <= n; ++i) fac[i] = fac[i - ] * i % mod;
for (int i = ; i <= n; ++i)
for (int j = i; j <= n; ++j) add(sum[i], f[i][j]); for (int i = ; i <= n; ++i) {
LL tmp = sum[i] * fac[n - i] % mod - sum[i + ] * fac[n - i - ] % mod * (i + ) % mod;
if (tmp < ) tmp += mod;
add(ans, tmp);
}
cout << ans; return ;
}

4361: isn的更多相关文章

  1. ●BZOJ 4361 isn

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4361 题解: 容斥,DP,树状数组 注意题意:一旦变成了非降序列,就停止操作.即对非降序列进 ...

  2. BZOJ 4361 isn | DP 树状数组

    链接 BZOJ 4361 题面 给出一个长度为n的序列A(A1,A2...AN).如果序列A不是非降的,你必须从中删去一个数, 这一操作,直到A非降为止.求有多少种不同的操作方案,答案模10^9+7. ...

  3. 【BZOJ 4361】 4361: isn (DP+树状数组+容斥)

    4361: isn Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 218  Solved: 126 Description 给出一个长度为n的序列A( ...

  4. BZOJ 4361 isn 容斥+dp+树状数组

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4361 题意概述: 给出一个长度为N的序列A(A1,A2...AN).如果序列A不是非降的 ...

  5. [BZOJ 4361]isn

    Description 题库链接 给出一个长度为 \(n\) 的序列 \(A\) .如果序列 \(A\) 不是非降的,你必须从中删去一个数,这一操作,直到 \(A\) 非降为止.求有多少种不同的操作方 ...

  6. #1 // BZOJ 4361 isn

    Description 给出一个长度为n的序列A(A1,A2...AN).如果序列A不是非降的,你必须从中删去一个数, 这一操作,直到A非降为止.求有多少种不同的操作方案,答案模10^9+7.   题 ...

  7. BZOJ.4361.isn(DP 树状数组 容斥)

    题目链接 长度为\(i\)的不降子序列个数是可以DP求的. 用\(f[i][j]\)表示长度为\(i\),结尾元素为\(a_j\)的不降子序列个数.转移为\(f[i][j]=\sum f[i-1][k ...

  8. 【BZOJ】4361: isn

    题解 可以想一下保留一个长度为k的不降序列方案数是\(f[k] (n - k)!\) \(f[k]\)是有多少个长度为k的不降序列 我们去掉不合法的,一定是前一次操作的时候有一个长度为\(k + 1\ ...

  9. 通用js地址选择器

    用js实现通用的地址选择器,省份,城市,地区自动关联更新 点击下面查看详细代码: http://runjs.cn/code/s8sqkhcv 关键地址库代码: var addr_arr = new A ...

随机推荐

  1. Web App, Native APP,Hybird App 介绍

    一.Web App 这个主要是采用统一的标准的 HTML,JavaScript.CSS 等 web 技术开发. 用户无需下载,通过不同平台 的浏览器访问来实现跨平台, 同时可以通过浏览器支持充分使用 ...

  2. 【[SDOI2014]数数】

    被慎老师教育数位\(dp\)怎么写了 看来我数位\(dp\)的写法太落后了 这道题很显然就是一个\(AC\)自动机上的数位\(dp\),按照套路 我们可以设计\(dp[i][j][0/1]\)表示匹配 ...

  3. 【BBS】BBS论坛项目各个页面的工作流程图

    1论坛整体结构 2数据库结构 3登录页面 4论坛首页(显示各个板块) 5显示板块对应的内容 6文章内容页 7新增板块.发表文章.回复 8版面管理.用户管理.发帖排行

  4. docker-6-DockerFile解析

    1.是什么 Dockerfile是用来构建Docker镜像的构建文件,是由一系列命令和参数构成的脚本. 构建三步骤: 1.编写Dockerfile文件 2.docker build 3.docker ...

  5. docker-4-镜像

    是什么 镜像是一种轻量级.可执行的独立软件包,用来打包软件运行环境和基于运行环境开发的软件, 它包含运行某个软件所需的所有内容,包括代码.运行时.库.环境变量和配置文件. 1.UnionFS(联合文件 ...

  6. [转]MBTiles 1.2 规范翻译

    MBTiles 1.2 可以参考超图的文档MBTiles扩展具体实现可以参考浅谈利用SQLite存储离散瓦片的思路和实现方法 mapbox提供了一个简单实现测试代码,github地址在这里https: ...

  7. 通讯协议(一)HTTP协议

    协议是指计算机通信网络中两台计算机之间进行通信所必须共同遵守的规定或规则,超文本传输协议(HTTP)是一种通信协议,它允许将超文本标记语言(HTML)文档从Web服务器传送到客户端的浏览器.目前我们使 ...

  8. 部署Jar包到远程Maven仓库

    在使用maven开发工程时,模块A可能会依赖模块B的jar包,如果两个模块都是在一个工程里,只需要在模块A的pom文件中加入模块B的依赖信息,模块A就可以加载模块B的jar包.但如果模块A与模块B在不 ...

  9. 创建DBLink----Oracle和mysql

    Oracle: DROP PUBLIC DATABASE LINK NM_HN; CREATE PUBLIC DATABASE LINK NM_HN CONNECT TO XZXT IDENTIFIE ...

  10. (转)解决nginx: [error] open() "/usr/local/nginx/logs/nginx.pid" failed错误

    重新启动服务器,访问web服务发现无法浏览啦!登陆服务器之后进到nginx使用./nginx -s reload重新读取配置文件,发现报nginx: [error] open() "/usr ...