Portal -->bzoj2318

Description

  Alice和Bob在玩一个游戏。有n个石子在这里,Alice和Bob轮流投掷硬币,如果正面朝上,则从n个石子中取出一个石子,否则不做任何事。取到最后一颗石子的人胜利。Alice在投掷硬币时有p的概率投掷出他想投的一面,同样,Bob有q的概率投掷出他相投的一面。

  现在Alice先手投掷硬币,假设他们都想赢得游戏,问你Alice胜利的概率为多少。

  答案保留6位小数

  数据范围$1<=t<=50,0.5<=q,p<=0.99999999,1<=n<=99999999 $

Solution

  额这题也是权限题放一下题面好了

  这个的话一开始自己想多了。。老觉得会不会说为了最优决策所以Alice为了有更大的概率得到想要的结果而故意想相反的结果之类的。。

​  emmm后来发现Alice和Bob根本不知道概率是多少所以根本不存在这个问题qwq

​  

  那所以我们可以考虑直接两个数组大力dp

  记\(f[i]\)为\(i\)个石子的情况下Alice(先手)的胜率,\(g[i]\)为\(i\)个石子的情况下Bob(后手)的胜率

  那么我们可以得到这样的两种转移:

1、如果说这一步拿走石子会更优,那么有:

\[\begin{aligned}
f[i]=p*g[i-1]+(1-p)*g[i]\\
g[i]=q*f[i-1]+(1-q)*f[i]\\
\end{aligned}
\]

  具体一点的话以\(f[i]\)的计算为例,前半部分是第一步Alice拿了,然后局面就变成了有\(i-1\)个石头并且是后手,所以乘的是\(g[i-1]\),然后后半部分就是第一步Alice没有拿,那就变成了有\(i\)个石头并且是后手,所以是乘上\(g[i]\),第二条式子同理就不赘述了

  然后我们大力化一下可以将这两条式子变成用\(f[i-1]\)和\(g[i-1]\)推出\(f[i]\)和\(g[i]\)的式子

  (用\(g[i]\)的表达式把第一条式子里面的\(g[i]\)换掉就好了,第二条式子的处理类似):

\[\begin{aligned}
f[i]&=\frac{p*g[i-1]+(1-p)*q*f[i-1])}{1-(1-p)(1-q)}\\
\\
g[i]&=\frac{q*f[i-1]+(1-q)*p*g[i-1])}{1-(1-p)(1-q)}\\
\end{aligned}
\]

2、如果说这一步不拿走石子会更优,那么有:

\[\begin{aligned}
f[i]=p*g[i]+(1-p)*g[i-1]\\
g[i]=q*f[i]+(1-q)*f[i-1]\\
\end{aligned}
\]

  具体含义什么的跟上面的差不多

  仔细看一下emmmm那好像直接就是\(p\)变成了\(1-p\)然后\(q\)变成了\(1-q\)而已。。所以转移的时候判断一下就好了

  

  那现在就是怎么判断是拿更优还是不拿更优,仔细思考一下这个拿和不拿其实影响到的是接下来局面的先手后手问题,所以我们就比较一下\(i-1\)个石子的情况下是先手的胜率更大还是后手的胜率更大就好了,也就是直接比较一下\(f[i-1]\)和\(g[i-1]\)即可

  然后还有一个东西就是。。推大概到\(1000\)之后(额或者更小一点也行qwq貌似只推到\(50\)也。。问题不大?没有交过qwq)在精度范围内就不会有变化了,所以大力“近似”一下每次只用推到\(1000\),这样就不会有超时的问题啦(算是一个套路吗。。?)

  

  代码大概长这个样子:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=1001;
double f[N],g[N];
double p,q,P,Q;
int n,m,t; int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
scanf("%d",&t);
for (int o=1;o<=t;++o){
scanf("%d%lf%lf",&n,&P,&Q);
n=min(n,1000);
f[0]=0; g[0]=1;
for (int i=1;i<=n;++i){
if (f[i-1]>g[i-1]) p=1.0-P,q=1.0-Q;
else p=P,q=Q;
f[i]=(p*g[i-1]+(1-p)*q*f[i-1])/(1-(1-p)*(1-q));
g[i]=(q*f[i-1]+(1-q)*p*g[i-1])/(1-(1-p)*(1-q));
}
printf("%.6lf\n",f[n]);
}
}

【bzoj2318】game with probability的更多相关文章

  1. 【BZOJ2318】Spoj4060 game with probability Problem 概率

    [BZOJ2318]Spoj4060 game with probability Problem Description Alice和Bob在玩一个游戏.有n个石子在这里,Alice和Bob轮流投掷硬 ...

  2. 【leetcode】688. Knight Probability in Chessboard

    题目如下: On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exa ...

  3. 【bzoj2318】Spoj4060 game with probability Problem

    题目描述 Alice和Bob在玩一个游戏.有n个石子在这里,Alice和Bob轮流投掷硬币,如果正面朝上,则从n个石子中取出一个石子,否则不做任何事.取到最后一颗石子的人胜利.Alice在投掷硬币时有 ...

  4. 【BZOJ2318】【spoj4060】game with probability Problem 概率DP

    链接: #include <stdio.h> int main() { puts("转载请注明出处[辗转山河弋流歌 by 空灰冰魂]谢谢"); puts("网 ...

  5. 【bzoj2318】Spoj4060 game with probability Problem 概率dp

    题目描述 Alice和Bob在玩一个游戏.有n个石子在这里,Alice和Bob轮流投掷硬币,如果正面朝上,则从n个石子中取出一个石子,否则不做任何事.取到最后一颗石子的人胜利.Alice在投掷硬币时有 ...

  6. 【LeetCode】688. Knight Probability in Chessboard 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址:https://leetcode.com/problems/knight-pr ...

  7. 【概率论】2-1:条件概率(Conditional Probability)

    title: [概率论]2-1:条件概率(Conditional Probability) categories: Mathematic Probability keywords: Condition ...

  8. 【概率论】1-1:概率定义(Definition of Probability)

    title: [概率论]1-1:概率定义(Definition of Probability) categories: Mathematic Probability keywords: Sample ...

  9. 【原创】开源Math.NET基础数学类库使用(12)C#随机数扩展方法

                   本博客所有文章分类的总目录:[总目录]本博客博文总目录-实时更新  开源Math.NET基础数学类库使用总目录:[目录]开源Math.NET基础数学类库使用总目录 前言 ...

随机推荐

  1. Docker--从安装到搭建环境

    docker 1. ubuntu下安装docker 安装docker有两种方法: 一种是用官方的bash脚本一键安装. 直接一条命令就解决了: $ curl -sSL https://get.dock ...

  2. katalon系列十三:5.10新增跳过用例&命令行赋值全局变量

    Katalon Studio升级到5.10版本了,这次新增了2个很实用的功能:一.跳过用例在Listener中新增了跳过用例方法,Listener类似于JUnit4的annotation中的@Befo ...

  3. Egret入门(二)--windows下环境搭建

    准备材料 安装Node.js TypeScript编辑器 HTTP服务器(可选) Chorme(可选) Egret 安装Node.js 打开www.nodejs.org 下载安装(全部next,全默认 ...

  4. Python 并行分布式框架:Celery 超详细介绍

    本博客摘自:http://blog.csdn.net/liuxiaochen123/article/details/47981111 先来一张图,这是在网上最多的一张Celery的图了,确实描述的非常 ...

  5. javascript event对象操作

    js代码: $(".leads_detail").click(function(e){ e = e || event; var t = e.target || e.srcEleme ...

  6. Scrum立会报告+燃尽图(Beta阶段第二周第二次)

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2410 项目地址:https://coding.net/u/wuyy694 ...

  7. SDN前瞻 传统网络的缺陷

    引言 在网络发展速度如此之快的今天,传统网络的架构充满了危机,主要有这四个问题: 传统网络部署管理困难. 分布式架构瓶颈出现. 流量控制难真正实现. 设备不可编程. 现在的网络厂商 种类繁多的网络厂商 ...

  8. [hook.js]通用Javascript函数钩子及其他

    2013.02.16<:article id=post_content> 最近看Dom Xss检测相关的Paper,涉及到Hook Javascript函数,网上翻了一下,貌似没有什么通用 ...

  9. Objective - C 之协议

    一.创建方法: 二.实现过程: 1.遵循协议: @protocol NurseWorkingProtocol <NSObject>   //<> 表示遵守协议,创建时就有(Nu ...

  10. Vue于React特性对比(二)

    一,关于响应式数据更新方式的实现 1)只有在data里面定义的数据才会有响应式更新 vue依赖的defineProperty的数据劫持加上依赖数据,实现数据的响应式更新.可以称之为依赖式的响应.因为依 ...