【bzoj2318】game with probability
Description
Alice和Bob在玩一个游戏。有n个石子在这里,Alice和Bob轮流投掷硬币,如果正面朝上,则从n个石子中取出一个石子,否则不做任何事。取到最后一颗石子的人胜利。Alice在投掷硬币时有p的概率投掷出他想投的一面,同样,Bob有q的概率投掷出他相投的一面。
现在Alice先手投掷硬币,假设他们都想赢得游戏,问你Alice胜利的概率为多少。
答案保留6位小数
数据范围$1<=t<=50,0.5<=q,p<=0.99999999,1<=n<=99999999 $
Solution
额这题也是权限题放一下题面好了
这个的话一开始自己想多了。。老觉得会不会说为了最优决策所以Alice为了有更大的概率得到想要的结果而故意想相反的结果之类的。。
emmm后来发现Alice和Bob根本不知道概率是多少所以根本不存在这个问题qwq
那所以我们可以考虑直接两个数组大力dp
记\(f[i]\)为\(i\)个石子的情况下Alice(先手)的胜率,\(g[i]\)为\(i\)个石子的情况下Bob(后手)的胜率
那么我们可以得到这样的两种转移:
1、如果说这一步拿走石子会更优,那么有:
f[i]=p*g[i-1]+(1-p)*g[i]\\
g[i]=q*f[i-1]+(1-q)*f[i]\\
\end{aligned}
\]
具体一点的话以\(f[i]\)的计算为例,前半部分是第一步Alice拿了,然后局面就变成了有\(i-1\)个石头并且是后手,所以乘的是\(g[i-1]\),然后后半部分就是第一步Alice没有拿,那就变成了有\(i\)个石头并且是后手,所以是乘上\(g[i]\),第二条式子同理就不赘述了
然后我们大力化一下可以将这两条式子变成用\(f[i-1]\)和\(g[i-1]\)推出\(f[i]\)和\(g[i]\)的式子
(用\(g[i]\)的表达式把第一条式子里面的\(g[i]\)换掉就好了,第二条式子的处理类似):
f[i]&=\frac{p*g[i-1]+(1-p)*q*f[i-1])}{1-(1-p)(1-q)}\\
\\
g[i]&=\frac{q*f[i-1]+(1-q)*p*g[i-1])}{1-(1-p)(1-q)}\\
\end{aligned}
\]
2、如果说这一步不拿走石子会更优,那么有:
f[i]=p*g[i]+(1-p)*g[i-1]\\
g[i]=q*f[i]+(1-q)*f[i-1]\\
\end{aligned}
\]
具体含义什么的跟上面的差不多
仔细看一下emmmm那好像直接就是\(p\)变成了\(1-p\)然后\(q\)变成了\(1-q\)而已。。所以转移的时候判断一下就好了
那现在就是怎么判断是拿更优还是不拿更优,仔细思考一下这个拿和不拿其实影响到的是接下来局面的先手后手问题,所以我们就比较一下\(i-1\)个石子的情况下是先手的胜率更大还是后手的胜率更大就好了,也就是直接比较一下\(f[i-1]\)和\(g[i-1]\)即可
然后还有一个东西就是。。推大概到\(1000\)之后(额或者更小一点也行qwq貌似只推到\(50\)也。。问题不大?没有交过qwq)在精度范围内就不会有变化了,所以大力“近似”一下每次只用推到\(1000\),这样就不会有超时的问题啦(算是一个套路吗。。?)
代码大概长这个样子:
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=1001;
double f[N],g[N];
double p,q,P,Q;
int n,m,t;
int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
scanf("%d",&t);
for (int o=1;o<=t;++o){
scanf("%d%lf%lf",&n,&P,&Q);
n=min(n,1000);
f[0]=0; g[0]=1;
for (int i=1;i<=n;++i){
if (f[i-1]>g[i-1]) p=1.0-P,q=1.0-Q;
else p=P,q=Q;
f[i]=(p*g[i-1]+(1-p)*q*f[i-1])/(1-(1-p)*(1-q));
g[i]=(q*f[i-1]+(1-q)*p*g[i-1])/(1-(1-p)*(1-q));
}
printf("%.6lf\n",f[n]);
}
}
【bzoj2318】game with probability的更多相关文章
- 【BZOJ2318】Spoj4060 game with probability Problem 概率
[BZOJ2318]Spoj4060 game with probability Problem Description Alice和Bob在玩一个游戏.有n个石子在这里,Alice和Bob轮流投掷硬 ...
- 【leetcode】688. Knight Probability in Chessboard
题目如下: On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exa ...
- 【bzoj2318】Spoj4060 game with probability Problem
题目描述 Alice和Bob在玩一个游戏.有n个石子在这里,Alice和Bob轮流投掷硬币,如果正面朝上,则从n个石子中取出一个石子,否则不做任何事.取到最后一颗石子的人胜利.Alice在投掷硬币时有 ...
- 【BZOJ2318】【spoj4060】game with probability Problem 概率DP
链接: #include <stdio.h> int main() { puts("转载请注明出处[辗转山河弋流歌 by 空灰冰魂]谢谢"); puts("网 ...
- 【bzoj2318】Spoj4060 game with probability Problem 概率dp
题目描述 Alice和Bob在玩一个游戏.有n个石子在这里,Alice和Bob轮流投掷硬币,如果正面朝上,则从n个石子中取出一个石子,否则不做任何事.取到最后一颗石子的人胜利.Alice在投掷硬币时有 ...
- 【LeetCode】688. Knight Probability in Chessboard 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址:https://leetcode.com/problems/knight-pr ...
- 【概率论】2-1:条件概率(Conditional Probability)
title: [概率论]2-1:条件概率(Conditional Probability) categories: Mathematic Probability keywords: Condition ...
- 【概率论】1-1:概率定义(Definition of Probability)
title: [概率论]1-1:概率定义(Definition of Probability) categories: Mathematic Probability keywords: Sample ...
- 【原创】开源Math.NET基础数学类库使用(12)C#随机数扩展方法
本博客所有文章分类的总目录:[总目录]本博客博文总目录-实时更新 开源Math.NET基础数学类库使用总目录:[目录]开源Math.NET基础数学类库使用总目录 前言 ...
随机推荐
- python装饰器简单使用
装饰器和闭包关联很大,要先明白闭包是什么 原始代码: def foo(): print('fcc') 增加装饰器 from time import ctime,sleep def w(fcc): de ...
- 03-运行第一个docker容器
环境选择 容器需要管理工具.runtime 和操作系统,我们的选择如下: 1.管理工具 - Docker Engine因为 Docker 最流行使用最广泛. 2.runtime - runc Dock ...
- AtCoder Regular Contest 101 D - Median of Medians
二分答案 然后前缀和+树状数组来判断这个答案是否大于等于数 如果我们对于一个查询,如果小于这个数令为1,大于这个数领为-1 将所有前缀和放在树状数组中,就可以查询所有sum_{l} < sum_ ...
- 运输层(TCP/UDP)详解
TCP和UDP的区别: tcp是面向连接的可靠的传输协议 udp是非连接的不可靠的传输协议 TCP组成 可以看到虽然tcp是面向字节流的,但是其传输的基本单位还是报文(tcp首部和数据,ip报文和ud ...
- JAVA学习笔记--匿名内部类
匿名内部类,即没有名字的内部类. 我们在编写JAVA程序时,往往要创建很多类,类是可以被重复使用的.但有时,我们创建了一个类,却只需要使用该类一次,那么单独为其编写一个类就显得有些麻烦,这时可以使用匿 ...
- ADAS芯片解决方案汇总
ADAS(高级辅助驾驶系统),是指利用安装于车上各式各样的传感器,在第一时间收集车内的环境数据,进行静.动态物体的辨识.侦测与追踪等技术上的处理,从而能够让驾驶者在最快的时间察觉可能发生的危险. 在过 ...
- IC设计前后端流程与EDA工具
IC前端设计(逻辑设计)和后端设计(物理设计)的区分: 以设计是否与工艺有关来区分二者:从设计程度上来讲,前端设计的结果就是得到了芯片的门级网表电路. 前端设计的流程及使用的EDA工具 1.架构的设计 ...
- Wormholes POJ 3259(SPFA判负环)
Description While exploring his many farms, Farmer John has discovered a number of amazing wormholes ...
- MySQL的课堂的实践
MySQL的课堂的实践 基本认识 如今的数据库有几种是主流,分别是:Oracle Database.Informix.SQL Server.PostgreSQL.MySQL等,我们现在学习的MySQL ...
- git找回当前目录下误删的所有文件
git checkout . 参考:http://opentechschool.github.io/social-coding/extras/delete-restore.html