【刷题】LOJ 6003 「网络流 24 题」魔术球
题目描述
假设有 \(n\) 根柱子,现要按下述规则在这 \(n\) 根柱子中依次放入编号为 \(1, 2, 3, 4, \cdots\) 的球。
每次只能在某根柱子的最上面放球。
在同一根柱子中,任何 \(2\) 个相邻球的编号之和为完全平方数。
试设计一个算法,计算出在 \(n\) 根柱子上最多能放多少个球。
输入格式
文件第 \(1\) 行有 \(1\) 个正整数 \(n\),表示柱子数。
输出格式
第一行是球数。接下来的 \(n\) 行,每行是一根柱子上的球的编号。
样例
样例输入
4
样例输出
11
1 8
2 7 9
3 6 10
4 5 11
数据范围与提示
\(1 \leq n \leq 55\)
题解
枚举答案
对于一个新的数字,它可以新出一根柱子,即直接与源点相连,容量为 \(1\) ;还可以接在别的数字的后面,即与满足条件的其它数字连边
当最大流超过 \(n\) ,就说明需要的柱子超过 \(n\) 了,枚举的数字的上一个就是答案
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=4100+10,MAXM=300000+10,inf=0x3f3f3f3f;
int n,ans,e=1,beg[MAXN],nex[MAXM],to[MAXM],cap[MAXM],out[MAXM],pt[MAXN],level[MAXN],cur[MAXN],vis[MAXN],clk,s,t,res;
std::queue<int> q;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline bool check(int x)
{
int qt=std::sqrt(x);
return qt*qt==x;
}
inline void insert(int x,int y,int z)
{
to[++e]=y;
nex[e]=beg[x];
out[e]=x;
beg[x]=e;
cap[e]=z;
to[++e]=x;
nex[e]=beg[y];
out[e]=y;
beg[y]=e;
cap[e]=0;
}
inline bool bfs()
{
memset(level,0,sizeof(level));
level[s]=1;
q.push(s);
while(!q.empty())
{
int x=q.front();
q.pop();
for(register int i=beg[x];i;i=nex[i])
if(cap[i]&&!level[to[i]])level[to[i]]=level[x]+1,q.push(to[i]);
}
return level[t];
}
inline int dfs(int x,int maxflow)
{
if(x==t||!maxflow)return maxflow;
int res=0;
vis[x]=clk;
for(register int &i=cur[x];i;i=nex[i])
if((vis[to[i]]^vis[x])&&cap[i]&&level[to[i]]==level[x]+1)
{
int f=dfs(to[i],min(maxflow,cap[i]));
res+=f;
cap[i]-=f;
cap[i^1]+=f;
maxflow-=f;
if(!maxflow)break;
}
vis[x]=0;
return res;
}
inline int Dinic()
{
while(bfs())clk++,memcpy(cur,beg,sizeof(cur)),res+=dfs(s,inf);
return res;
}
inline void dfs(int x)
{
if(!x)return ;
vis[x]=1;
write(x,' ');
dfs(pt[x]);
}
int main()
{
read(n);
s=3999,t=4000;
for(register int i=1;;++i)
{
insert(s,i,1);insert(i+1600,t,1);
for(register int j=1;j<i;++j)
if(check(i+j))insert(j,i+1600,1);
if(i-Dinic()>n)
{
ans=i-1;
break;
}
}
write(ans,'\n');
for(register int i=2;i<=e;i+=2)
if(!cap[i]&&out[i]!=s&&to[i]!=t)pt[out[i]]=to[i]-1600;
for(register int i=1;i<=ans;++i)
if(!vis[i])dfs(i),puts("");
return 0;
}
【刷题】LOJ 6003 「网络流 24 题」魔术球的更多相关文章
- [loj #6003]「网络流 24 题」魔术球 二分图最小路径覆盖,网络流
#6003. 「网络流 24 题」魔术球 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据 ...
- 2018.10.14 loj#6003. 「网络流 24 题」魔术球(最大流)
传送门 网络流好题. 这道题可以动态建图. 不难想到把每个球iii都拆点成i1i_1i1和i2i_2i2,每次连边(s,i1),(i2,t)(s,i_1),(i_2,t)(s,i1),(i2, ...
- 【刷题】LOJ 6227 「网络流 24 题」最长k可重线段集问题
题目描述 给定平面 \(\text{xoy}\) 上 \(n\) 个开线段组成的集合 \(\text{I}\) ,和一个正整数 \(k\) ,试设计一个算法. 从开线段集合 \(\text{I}\) ...
- LibreOJ 6003. 「网络流 24 题」魔术球 贪心或者最小路径覆盖
6003. 「网络流 24 题」魔术球 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据 ...
- Libre 6003 「网络流 24 题」魔术球 (网络流,最大流)
Libre 6003 「网络流 24 题」魔术球 (网络流,最大流) Description 假设有n根柱子,现要按下述规则在这n根柱子中依次放入编号为 1,2,3,4......的球. (1)每次只 ...
- [luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划
[luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划 试题描述 一个餐厅在相继的 \(N\) 天里,第 \(i\) 天需要 \(R_i\) 块餐巾 \((i=l,2,-,N)\) ...
- [LOJ#6002]「网络流 24 题」最小路径覆盖
[LOJ#6002]「网络流 24 题」最小路径覆盖 试题描述 给定有向图 G=(V,E).设 P 是 G 的一个简单路(顶点不相交)的集合.如果 V 中每个顶点恰好在 P 的一条路上,则称 P 是 ...
- loj #6014. 「网络流 24 题」最长 k 可重区间集
#6014. 「网络流 24 题」最长 k 可重区间集 题目描述 给定实直线 L LL 上 n nn 个开区间组成的集合 I II,和一个正整数 k kk,试设计一个算法,从开区间集合 I II 中选 ...
- loj #6013. 「网络流 24 题」负载平衡
#6013. 「网络流 24 题」负载平衡 题目描述 G 公司有 n nn 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 n nn 个仓库的库存数量相同.搬运货物时 ...
随机推荐
- css样式显示省略号
用css样式显示省略号,记 .xx{ display: block; width:200px;/*对宽度的定义,根据情况修改*/ overflow: hidden; white-space: n ...
- Linux CentOS7系统中phpMyAdmin安装配置
今天介绍的是如何在Linux CentOS7系统中配置phpMyAdmin. 目录 环境准备 安装包 基本设置 网站预览 环境准备 linux centos7系统 ssh软件 php语言环境 mysq ...
- kettle学习笔记(六)——kettle转换步骤
一.概述 转换步骤分类: 1. 增加新的列 2. 字符串处理 3. 行列变换 4. 排序/排重/字段选择 5. 其他转换步骤 二.增加新的列 1.增加常量列 增加一列常量的列 其它增加列的操作大同小异 ...
- Exp5:MSF基础应用
Exp5:MSF基础应用 一.基础问题回答 (1)用自己的话解释什么是 exploit , payload , encode. exploit: 设相当于利用漏洞偷偷打开的管道,将做好的木马病毒等顺利 ...
- 20155333 《网络对抗》 Exp7 网络欺诈防范
20155333 <网络对抗> Exp7 网络欺诈防范 基础问题 通常在什么场景下容易受到DNS spoof攻击? 公共网络 在日常生活工作中如何防范以上两种攻击方法? DNS欺骗攻击是很 ...
- 【WPF】两则动画效果
原文:[WPF]两则动画效果 引言 利用WPF的动画可以轻而易举的实现各种各样的特效,如擦除,滑动进入等,先看两个效果图 第一个效果 这个动画其实利用了OpacityMask和LinearGradie ...
- Kubernetes学习之路目录
Kubernetes基础篇 环境说明 版本说明 系统环境 Centos 7.2 Kubernetes版本 v1.11.2 Docker版本 v18.09 Kubernetes学习之路(一)之概念和架构 ...
- ElasticSearch查询 第三篇:词条查询
<ElasticSearch查询>目录导航: ElasticSearch查询 第一篇:搜索API ElasticSearch查询 第二篇:文档更新 ElasticSearch查询 第三篇: ...
- java File读取文件始终不存在的问题分析
先上图: 如图,f1 始终能读到该文件,使用的是绝对路径 f2 却是相对路径. 感觉很奇怪,明明一模一样的代码为什么会产生不同的结果呢? 首先想到的是是不是有什么特殊字符.. 拿到notepad++中 ...
- pt-online-schema-change的实现原理
pt-online-schema-change用于MySQL的在线DDL. 下面结合官方文档和general log来分析其实现原理. 测试表 mysql> show create table ...