题目大意

一个序列,支持区间开方与求和操作。

算法:线段树实现开方修改与区间求和

分析

  • 显然,这道题的求和操作可以用线段树来维护
  • 但是如何来实现区间开方呢
  • 大家有没有这样的经历:玩计算器的时候,把一个数疯狂的按开方,最后总会变成 \(1\),之后在怎样开方也是 \(1\) (\(\sqrt1=1\))
  • 同样的,\(\sqrt0=0\)
  • 所以,只要一段区间里的所有数全都 \(\leq 1\) 了,便可以不去修改它

实现

  • 线段树维护区间和 \(sum\) 与最大值 \(Max\)
  • 在修改过程中,只去修改 \(Max > 1\) 的区间
  • 到了叶子节点对\(sum\)和\(Max\)进行开方就行了

复杂度

  • 每个数 \(\leq 10 ^ {12}\),所以至多开方\(6\)次便可以得到\(1\)
  • 每次操作是 \(\log n\)的,总复杂度\(O(n \log n)\)

注意事项

  • 请使用long long
  • 可能 \(l > r\)(把我坑了)

代码:

#include <iostream>
#include <cstdlib>
#include <cmath>
#include <cstdio> using namespace std;
typedef long long LL;
const int MAXN = 100100; int n, m;
int cnt;
LL a[MAXN];
struct node
{
int left, right;
LL s, Max;
node *ch[2];
}pool[MAXN << 2], *root; inline void pushup(node *r)
{
r->s = r->ch[0]->s + r->ch[1]->s;
r->Max = max(r->ch[0]->Max, r->ch[1]->Max);
} inline void Build_Tree(node *r, int left, int right)
{
r->left = left;
r->right = right;
if(left == right)
{
r->s = r->Max = a[left];
return ;
}
int mid = (left + right) / 2;
node *lson = &pool[++cnt];
node *rson = &pool[++cnt];
r->ch[0] = lson;
r->ch[1] = rson;
Build_Tree(lson, left, mid);
Build_Tree(rson, mid + 1, right);
pushup(r);
} inline void change(node *r, int left, int right)
{
if(r->left == r->right)
{
r->s = sqrt(r->s);
r->Max = sqrt(r->Max);
return ;
} int mid = (r->left +r-> right) / 2;
if(left <= mid && r->ch[0]->Max > 1) change(r->ch[0], left, right);
if(mid < right && r->ch[1]->Max > 1) change(r->ch[1], left, right);
pushup(r);
} inline LL query(node *r, int left, int right)
{
if(r->left == left && r->right == right)
return r->s;
if(r->ch[0]->right >= right) return query(r->ch[0], left, right);
else if(r->ch[1]->left <= left) return query(r->ch[1], left, right);
else
return query(r->ch[0], left, r->ch[0]->right) +
query(r->ch[1], r->ch[1]->left, right);
}
int main()
{
scanf("%d", &n);
root = &pool[0];
for(int i = 1; i <= n; i++) scanf("%lld", &a[i]);
scanf("%d", &m);
Build_Tree(root, 1, n);
for(int i = 1; i <= m; i++)
{
int opt, l, r;
scanf("%d%d%d", &opt, &l, &r);
if(l > r) swap(l, r);
if(opt) printf("%lld\n", query(root, l, r));
else change(root, l, r);
}
return 1; //防抄
}

题解【luogu4145 上帝造题的七分钟2(花神游历各国)】的更多相关文章

  1. GSS4 - Can you answer these queries IV || luogu4145上帝造题的七分钟2 / 花神游历各国 (线段树)

    GSS4 - Can you answer these queries IV || luogu4145上帝造题的七分钟2 / 花神游历各国 GSS4 - Can you answer these qu ...

  2. 题解 洛谷 P4145 【上帝造题的七分钟2 / 花神游历各国】

    题目 上帝造题的七分钟2 / 花神游历各国 题目背景 XLk觉得<上帝造题的七分钟>不太过瘾,于是有了第二部. 题目描述 "第一分钟,X说,要有数列,于是便给定了一个正整数数列. ...

  3. 【luogu4145】上帝造题的七分钟2 / 花神游历各国--区间开根-线段树

    题目背景 XLk觉得<上帝造题的七分钟>不太过瘾,于是有了第二部. 题目描述 "第一分钟,X说,要有数列,于是便给定了一个正整数数列. 第二分钟,L说,要能修改,于是便有了对一段 ...

  4. 洛谷P4145 上帝造题的七分钟2 / 花神游历各国(重题:洛谷SP2713 GSS4 - Can you answer these queries IV)

    题目背景 XLk觉得<上帝造题的七分钟>不太过瘾,于是有了第二部. 题目描述 "第一分钟,X说,要有数列,于是便给定了一个正整数数列. 第二分钟,L说,要能修改,于是便有了对一段 ...

  5. 洛谷P4145 上帝造题的七分钟2/花神游历各国 [树状数组,并查集]

    题目传送门 题目背景 XLk觉得<上帝造题的七分钟>不太过瘾,于是有了第二部. 题目描述 "第一分钟,X说,要有数列,于是便给定了一个正整数数列. 第二分钟,L说,要能修改,于是 ...

  6. [bzoj3038/3211]上帝造题的七分钟2/花神游历各国_线段树

    上帝造题的七分钟2 bzoj-3038 题目大意:给定一个序列,支持:区间开方:查询区间和. 注释:$1\le n\le 10^5$,$1\le val[i] \le 10^{12}$. 想法:这题还 ...

  7. 洛谷P4145——上帝造题的七分钟2 / 花神游历各国

    题目背景 XLk觉得<上帝造题的七分钟>不太过瘾,于是有了第二部. 题目描述 "第一分钟,X说,要有数列,于是便给定了一个正整数数列. 第二分钟,L说,要能修改,于是便有了对一段 ...

  8. 【题解】 Luogu P4145 上帝造题的七分钟2 / 花神游历各国

    原题传送门 这道题实际和GSS4是一样的,只是输入方式有点区别 GSS4传送门 这道题暴力就能过qaq(这里暴力指线段树) 数据比较水 开方修改在线段树中枚举叶节点sqrt 查询区间和线段树基本操作 ...

  9. 线段树 SP2713 GSS4 - Can you answer these queries IV暨 【洛谷P4145】 上帝造题的七分钟2 / 花神游历各国

    SP2713 GSS4 - Can you answer these queries IV 「题意」: n 个数,每个数在\(10^{18}\) 范围内. 现在有「两种」操作 0 x y把区间\([x ...

  10. 洛谷 P4145 上帝造题的七分钟2 / 花神游历各国

    洛谷 这题就是区间开根号,区间求和.我们可以分块做. 我们记布尔数组vis[i]表示第i块中元素是否全部为1. 因为显然当一个块中元素全部为1时,并不需要对它进行根号操作. 我们每个块暴力开根号,因为 ...

随机推荐

  1. 测试模拟 白屏 / FOUC

    白屏和FOUC 白屏与无样式内容闪烁(FOUC)是因为不同浏览器加载与显示页面的机制不同而造成的. 我们可以通过一个实验来进行测试和模拟白屏.FOUC的现象,让我们更好的理解白屏.FOUC. 测试de ...

  2. [C++] Fucntions

    Statements A break statements terminate the nearest wile, do while, for or switch statement. A break ...

  3. Python3 数据类型-列表

    序列是Python中最基本的数据结构.序列中的每个元素都分配一个数字 - 它的位置,或索引,第一个索引是0,第二个索引是1,依此类推. 索引如下图: 列表命名(list): 组成:使用[]括起来,并且 ...

  4. Android开发随笔5

    昨天: 对界面的进一步设计补充 可以在界面之间的跳转 研究了对图标等的操作 今天: 实现对库的相关操作 学习视视频内容‘ 复习java的一些知识.

  5. Java Class Object

    Object类 它是所有类的基类. public class Person { } //实际上是 public class Person extends Object { } Object类的方法 t ...

  6. ACM 第十二天

    博弈论(巴什博奕,威佐夫博弈,尼姆博弈,斐波那契博弈,SG函数,SG定理) 一.  巴什博奕(Bash Game): A和B一块报数,每人每次报最少1个,最多报4个,看谁先报到30.这应该是最古老的关 ...

  7. pycharm开启代码智能提示和报错提示

    天呐,经历了一大波周折,终于把提示给弄好了,加入没有提示的话,pycharm就是一个空格了,没有什么作用,对我来说,真的是很困难的事情,所以无论如何都要去把这个智能提示给搞好了. 先讲讲我的经历吧.我 ...

  8. vuex管理页面标题

    1.在store -> mutation-types.js文件新增常量 export const UPDATE_TITLE = 'UPDATE_TITLE' 2.新增文件title.js目录结构 ...

  9. mysql三种备份方式

    一.备份的目的 做灾难恢复:对损坏的数据进行恢复和还原需求改变:因需求改变而需要把数据还原到改变以前测试:测试新功能是否可用 二.备份需要考虑的问题 可以容忍丢失多长时间的数据:恢复数据要在多长时间内 ...

  10. C#中的反射和扩展方法的运用

    前段时间做了一个练手的小项目,采用的是三层架构,也就是Models,IDAL,DAL,BLL 和 Web , 在DAL层中各个类中有一个方法比较常用,那就是 RowToClass ,顾名思义,也就是将 ...