为了1A我居然写了个暴力对拍...

  那个式子本质上是求nk个数里选j个数,且j%k==r的方案数。

  所以把组合数的递推式写出来f[i][j]=f[i-1][j]+f[i-1][(j-1+k)%k]...我们知道求组合数实际上是可以矩阵乘法优化的,只是没必要,但是这个时候就用上了...

  于是矩阵乘法优化,AC之~

#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#define ll long long
#define MOD(x) ((x)>=p?(x)-p:(x))
using namespace std;
const int maxn=,inf=1e9;
typedef ll mtx[][];
int n,p,K,r;
mtx f,g;
void read(int &k)
{
int f=;k=;char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(c<=''&&c>='')k=k*+c-'',c=getchar();
k*=f;
}
void mul(mtx &a,mtx b)
{
mtx c;memset(c,,sizeof(c));
for(int i=;i<=K;i++)
for(int j=;j<=K;j++)
for(int k=;k<=K;k++)
c[i][j]=(c[i][j]+a[i][k]*b[k][j])%p;
memcpy(a,c,sizeof(c));
}
void power(ll b)
{
for(;b;mul(f,f),b>>=)
if(b&)mul(g,f);
}
int main()
{
read(n);read(p);read(K);read(r);
for(int i=;i<=K;i++)g[i][i]=,f[i][i]=;
for(int i=;i<=K;i++)f[i][(i-+K)%K+]++;
power(1ll*n*K);
printf("%lld\n",g[r+][]);
}

bzoj4870: [Shoi2017]组合数问题(DP+矩阵乘法优化)的更多相关文章

  1. [BZOJ4870][Shoi2017]组合数问题 dp+矩阵乘

    4870: [Shoi2017]组合数问题 Time Limit: 10 Sec  Memory Limit: 512 MB Description Input 第一行有四个整数 n, p, k, r ...

  2. BZOJ4870:[SHOI2017]组合数问题(组合数学,矩阵乘法)

    Description Input 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ r < k ≤ 50, 2 ≤ p ≤ 2^30 − 1 ...

  3. BZOJ_4870_[Shoi2017]组合数问题_矩阵乘法

    BZOJ_4870_[Shoi2017]组合数问题_矩阵乘法 Description Input 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ ...

  4. 【BZOJ 3326】[Scoi2013]数数 数位dp+矩阵乘法优化

    挺好的数位dp……先说一下我个人的做法:经过观察,发现这题按照以往的思路从后往前递增,不怎么好推,然后我就大胆猜想,从前往后推,发现很好推啊,维护四个变量,从开始位置到现在有了i个数 f[i]:所有数 ...

  5. 洛谷2151[SDOI2009]HH去散步(dp+矩阵乘法优化)

    一道良好的矩阵乘法优化\(dp\)的题. 首先,一个比较\(naive\)的想法. 我们定义\(dp[i][j]\)表示已经走了\(i\)步,当前在点\(j\)的方案数. 由于题目中限制了不能立即走之 ...

  6. BZOJ 4870 [Shoi2017]组合数问题 ——动态规划 矩阵乘法

    注意到$r<k$ 别问我为什么要强调. 考场上前30分水水. 然后写阶乘的时候大力$n\log {n}$预处理 本机跑的挺快的,然后稳稳的T掉了. 然后就是简单的矩阵乘法了. #include ...

  7. [BZOJ 1009] [HNOI2008] GT考试 【AC自动机 + 矩阵乘法优化DP】

    题目链接:BZOJ - 1009 题目分析 题目要求求出不包含给定字符串的长度为 n 的字符串的数量. 既然这样,应该就是 KMP + DP ,用 f[i][j] 表示长度为 i ,匹配到模式串第 j ...

  8. 形态形成场(矩阵乘法优化dp)

    形态形成场(矩阵乘法优化dp) 短信中将会涉及前\(k\)种大写字母,每个大写字母都有一个对应的替换式\(Si\),替换式中只会出现大写字母和数字,比如\(A→BB,B→CC0,C→123\),代表 ...

  9. 斐波那契数列 矩阵乘法优化DP

    斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007​\),\(n\le 10^{18}​\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...

随机推荐

  1. Python Road

    引子 雁离群兮不知所归,路遥远兮吾将何往   Python Road[第一篇]:Python简介 Python Road[第二篇]:Python基本数据类型 Python Road[第三篇]:Pyth ...

  2. 教你一招,提升你Python代码的可读性,小技巧

    Python的初学者,开发者都应该知道的代码可读性提高技巧,本篇主要介绍了如下内容: PEP 8是什么以及它存在的原因 为什么你应该编写符合PEP 8标准的代码 如何编写符合PEP 8的代码 为什么我 ...

  3. Django学习总结①

    Django基础环境配置好以后,打开pycharm,创建Django项目 视图views 中需要导入 django.http ---> HttpResponse models库 - 常用方法: ...

  4. STL之--插入迭代器(back_inserter,inserter,front_inserter的区别)

    除了普通迭代器,C++标准模板库还定义了几种特殊的迭代器,分别是插入迭代器.流迭代器.反向迭代器和移动迭代器,定义在<iterator>头文件中,下面主要介绍三种插入迭代器(back_in ...

  5. leetcode7_C++整数反转

      给出一个 32 位的有符号整数,你需要将这个整数中每位上的数字进行反转. 示例 1: 输入: 输出:  示例 2: 输入: - 输出: - 示例 3: 输入: 输出: 注意: 假设我们的环境只能存 ...

  6. Mysql-表和字段操作

    1.查看表 show tables; 2.创建表 create table test( id int primary key auto_increment, name varchar(40) not ...

  7. nginx配置和网站的部署

    环境: CentOS Linux release 7.3.1611 (Core) nginx version: nginx/1.13.4 PHP 5.4.16 (cli) (built: Nov 6 ...

  8. 软件工程 part4 评价3作品

    作品1 抢答器 地址: https://modao.cc/app/ylGTXobcMU7ePNi6tY53gG4iraLl0md评价: 挺好玩,但是字体大小是个缺陷,简单大方. 作品2:连连看 软件工 ...

  9. MyEclipse2013使用总结

    1.myeclipse10中怎样将建的包设置成树形结构或者并列结构. 右上边三角那里进去设置选第一个是显示完整的包名,第二个显示的是树形结构这种方法没效 2.从高版本到项目的低版本的MyEclipse ...

  10. 3dContactPointAnnotationTool开发日志(四)

      没办法,为了能在寝室接着做这玩意只好又在电脑上装一个和实验室版本一样的unity了.虽然打开后UI界面还是一团糟,不过至少要的东西都在,又手动调了调UI界面.   然后把旋转视角功能加上了.鼠标右 ...