【OpenCV】SIFT原理与源码分析:方向赋值
《SIFT原理与源码分析》系列文章索引:http://www.cnblogs.com/tianyalu/p/5467813.html
由前一篇《关键点搜索与定位》,我们已经找到了关键点。为了实现图像旋转不变性,需要根据检测到的关键点局部图像结构为特征点方向赋值。也就是在findScaleSpaceExtrema()函数里看到的alcOrientationHist()语句:
// 计算梯度直方图
float omax = calcOrientationHist(gauss_pyr[o*(nOctaveLayers+) + layer],
Point(c1, r1),
cvRound(SIFT_ORI_RADIUS * scl_octv),
SIFT_ORI_SIG_FCTR * scl_octv,
hist, n);
梯度方向和幅值
在前文中,精确定位关键点后也找到改特征点的尺度值σ,根据这一尺度值,得到最接近这一尺度值的高斯图像:

使用有限差分,计算以关键点为中心,以3×1.5σ为半径的区域内图像梯度的幅角和幅值,公式如下:

梯度直方图
在完成关键点邻域内高斯图像梯度计算后,使用直方图统计邻域内像素对应的梯度方向和幅值。
有关直方图的基础知识可以参考《数字图像直方图》,可以看做是离散点的概率表示形式。此处方向直方图的核心是统计以关键点为原点,一定区域内的图像像素点对关键点方向生成所作的贡献。
梯度方向直方图的横轴是梯度方向角,纵轴是剃度方向角对应的梯度幅值累加值。梯度方向直方图将0°~360°的范围分为36个柱,每10°为一个柱。下图是从高斯图像上求取梯度,再由梯度得到梯度方向直方图的例图。

在计算直方图时,每个加入直方图的采样点都使用圆形高斯函数函数进行了加权处理,也就是进行高斯平滑。这主要是因为SIFT算法只考虑了尺度和旋转不变形,没有考虑仿射不变性。通过高斯平滑,可以使关键点附近的梯度幅值有较大权重,从而部分弥补没考虑仿射不变形产生的特征点不稳定。
通常离散的梯度直方图要进行插值拟合处理,以求取更精确的方向角度值。(这和《关键点搜索与定位》中插值的思路是一样的)。
关键点方向
直方图峰值代表该关键点处邻域内图像梯度的主方向,也就是该关键点的主方向。在梯度方向直方图中,当存在另一个相当于主峰值 80%能量的峰值时,则将这个方向认为是该关键点的辅方向。所以一个关键点可能检测得到多个方向,这可以增强匹配的鲁棒性。Lowe的论文指出大概有15%关键点具有多方向,但这些点对匹配的稳定性至为关键。
获得图像关键点主方向后,每个关键点有三个信息(x,y,σ,θ):位置、尺度、方向。由此我们可以确定一个SIFT特征区域。通常使用一个带箭头的圆或直接使用箭头表示SIFT区域的三个值:中心表示特征点位置,半径表示关键点尺度(r=2.5σ),箭头表示主方向。具有多个方向的关键点可以复制成多份,然后将方向值分别赋给复制后的关键点。如下图:

源码
// Computes a gradient orientation histogram at a specified pixel
// 计算特定点的梯度方向直方图
static float calcOrientationHist( const Mat& img, Point pt, int radius,
float sigma, float* hist, int n )
{
//len:2r+1也就是以r为半径的圆(正方形)像素个数
int i, j, k, len = (radius*+)*(radius*+); float expf_scale = -.f/(.f * sigma * sigma);
AutoBuffer<float> buf(len* + n+);
float *X = buf, *Y = X + len, *Mag = X, *Ori = Y + len, *W = Ori + len;
float* temphist = W + len + ; for( i = ; i < n; i++ )
temphist[i] = .f; // 图像梯度直方图统计的像素范围
for( i = -radius, k = ; i <= radius; i++ )
{
int y = pt.y + i;
if( y <= || y >= img.rows - )
continue;
for( j = -radius; j <= radius; j++ )
{
int x = pt.x + j;
if( x <= || x >= img.cols - )
continue; float dx = (float)(img.at<short>(y, x+) - img.at<short>(y, x-));
float dy = (float)(img.at<short>(y-, x) - img.at<short>(y+, x)); X[k] = dx; Y[k] = dy; W[k] = (i*i + j*j)*expf_scale;
k++;
}
} len = k; // compute gradient values, orientations and the weights over the pixel neighborhood
exp(W, W, len);
fastAtan2(Y, X, Ori, len, true);
magnitude(X, Y, Mag, len); // 计算直方图的每个bin
for( k = ; k < len; k++ )
{
int bin = cvRound((n/.f)*Ori[k]);
if( bin >= n )
bin -= n;
if( bin < )
bin += n;
temphist[bin] += W[k]*Mag[k];
} // smooth the histogram
// 高斯平滑
temphist[-] = temphist[n-];
temphist[-] = temphist[n-];
temphist[n] = temphist[];
temphist[n+] = temphist[];
for( i = ; i < n; i++ )
{
hist[i] = (temphist[i-] + temphist[i+])*(.f/.f) +
(temphist[i-] + temphist[i+])*(.f/.f) +
temphist[i]*(.f/.f);
} // 得到主方向
float maxval = hist[];
for( i = ; i < n; i++ )
maxval = std::max(maxval, hist[i]); return maxval;
}
这一步比较简单~参见《SIFT原理与源码分析》。
本文转自:http://blog.csdn.net/xiaowei_cqu/article/details/8096072
【OpenCV】SIFT原理与源码分析:方向赋值的更多相关文章
- OpenCV SIFT原理与源码分析
http://blog.csdn.net/xiaowei_cqu/article/details/8069548 SIFT简介 Scale Invariant Feature Transform,尺度 ...
- 【OpenCV】SIFT原理与源码分析:DoG尺度空间构造
原文地址:http://blog.csdn.net/xiaowei_cqu/article/details/8067881 尺度空间理论 自然界中的物体随着观测尺度不同有不同的表现形态.例如我们形 ...
- 【OpenCV】SIFT原理与源码分析:关键点描述
<SIFT原理与源码分析>系列文章索引:http://www.cnblogs.com/tianyalu/p/5467813.html 由前一篇<方向赋值>,为找到的关键点即SI ...
- 【OpenCV】SIFT原理与源码分析:关键点搜索与定位
<SIFT原理与源码分析>系列文章索引:http://www.cnblogs.com/tianyalu/p/5467813.html 由前一步<DoG尺度空间构造>,我们得到了 ...
- 【OpenCV】SIFT原理与源码分析
SIFT简介 Scale Invariant Feature Transform,尺度不变特征变换匹配算法,是由David G. Lowe在1999年(<Object Recognition f ...
- OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波
http://blog.csdn.net/chenyusiyuan/article/details/8710462 OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波 201 ...
- ConcurrentHashMap实现原理及源码分析
ConcurrentHashMap实现原理 ConcurrentHashMap源码分析 总结 ConcurrentHashMap是Java并发包中提供的一个线程安全且高效的HashMap实现(若对Ha ...
- HashMap和ConcurrentHashMap实现原理及源码分析
HashMap实现原理及源码分析 哈希表(hash table)也叫散列表,是一种非常重要的数据结构,应用场景及其丰富,许多缓存技术(比如memcached)的核心其实就是在内存中维护一张大的哈希表, ...
- (转)ReentrantLock实现原理及源码分析
背景:ReetrantLock底层是基于AQS实现的(CAS+CHL),有公平和非公平两种区别. 这种底层机制,很有必要通过跟踪源码来进行分析. 参考 ReentrantLock实现原理及源码分析 源 ...
随机推荐
- sendcloud golang 发送短信 示例代码
package main import ( "fmt" "crypto/md5" "encoding/hex" "sort&quo ...
- jpa的@Query中"?"占位符的使用小坑
今天使用@Query自定义查询语句,出现了一个错误: java.lang.IllegalArgumentException: Parameter with that position [1] did ...
- 算法笔记(c++)--01背包问题
算法笔记(c++)--经典01背包问题 算法解释起来太抽象了.也不是很好理解,最好的办法就是一步步写出来. 背包问题的核心在于m[i][j]=max(m[i-1][j],m[i-1][j-w[i]]+ ...
- 基于spec评论作品 - 探路者 贪吃蛇
基于spec评论作品,试用(并截图)所有其他小组的Alpha作品,与软件功能说明书对比,评论Alpha作品对软件功能说明书的实现. 首先通过命令行进入到游戏主页面中. 因为软件没有编译为exe程序,所 ...
- YQCB冲刺周第三天
团队讨论照片 今天的任务为实现由用户记录一条数据,向数据库中添加一条数据. 遇到的问题为获取单选框.下拉菜单的参数.
- UVALive - 6916 Punching Robot Lucas+dp
题目链接: http://acm.hust.edu.cn/vjudge/problem/96344 Punching Robot Time Limit: 1000MS64bit IO Format: ...
- 小白用Android MVP-初体验(一)
写android以来,一直都是采用MVC的模式,所有的业务逻辑,网络请求等都放在了View中,即Activity或者Fragment中.看了一些mvp文章,很多跨度较大,也因为自己造诣不够,还不能跟上 ...
- 团队作业4——第一次项目冲刺(Alpha版本)第三次
一.会议内容 制定任务内容 制作leangoo表格 初步工作 二.各人工作 成员 计划任务 遇见难题 贡献比 塗家瑜(组长) api搭建 无 1 张新磊 数据库搭建完成 无 1 姚燕彬 功能测试 无 ...
- 奥特曼小分队之we are a team
团队名称:奥特曼小分队 团队博客链接:http://cnblogs.com/ATMXFD 团队负责跑腿的:李全清 http://www.cnblogs.com/QuanQingli/ 团队成员: 孙乐 ...
- PAT 甲级 1054 The Dominant Color
https://pintia.cn/problem-sets/994805342720868352/problems/994805422639136768 Behind the scenes in t ...