《SIFT原理与源码分析》系列文章索引:http://www.cnblogs.com/tianyalu/p/5467813.html

由前一篇《关键点搜索与定位》,我们已经找到了关键点。为了实现图像旋转不变性,需要根据检测到的关键点局部图像结构为特征点方向赋值。也就是在findScaleSpaceExtrema()函数里看到的alcOrientationHist()语句:

// 计算梯度直方图
float omax = calcOrientationHist(gauss_pyr[o*(nOctaveLayers+) + layer],
Point(c1, r1),
cvRound(SIFT_ORI_RADIUS * scl_octv),
SIFT_ORI_SIG_FCTR * scl_octv,
hist, n);
我们使用图像的梯度直方图法求关键点局部结构的稳定方向。

梯度方向和幅值

在前文中,精确定位关键点后也找到改特征点的尺度值σ,根据这一尺度值,得到最接近这一尺度值的高斯图像:

使用有限差分,计算以关键点为中心,以3×1.5σ为半径的区域内图像梯度的幅角和幅值,公式如下:

梯度直方图

在完成关键点邻域内高斯图像梯度计算后,使用直方图统计邻域内像素对应的梯度方向和幅值。

有关直方图的基础知识可以参考《数字图像直方图》,可以看做是离散点的概率表示形式。此处方向直方图的核心是统计以关键点为原点,一定区域内的图像像素点对关键点方向生成所作的贡献。

梯度方向直方图的横轴是梯度方向角,纵轴是剃度方向角对应的梯度幅值累加值。梯度方向直方图将0°~360°的范围分为36个柱,每10°为一个柱。下图是从高斯图像上求取梯度,再由梯度得到梯度方向直方图的例图。

在计算直方图时,每个加入直方图的采样点都使用圆形高斯函数函数进行了加权处理,也就是进行高斯平滑。这主要是因为SIFT算法只考虑了尺度和旋转不变形,没有考虑仿射不变性。通过高斯平滑,可以使关键点附近的梯度幅值有较大权重,从而部分弥补没考虑仿射不变形产生的特征点不稳定。

通常离散的梯度直方图要进行插值拟合处理,以求取更精确的方向角度值。(这和《关键点搜索与定位》中插值的思路是一样的)。

关键点方向

直方图峰值代表该关键点处邻域内图像梯度的主方向,也就是该关键点的主方向。在梯度方向直方图中,当存在另一个相当于主峰值    80%能量的峰值时,则将这个方向认为是该关键点的辅方向。所以一个关键点可能检测得到多个方向,这可以增强匹配的鲁棒性。Lowe的论文指出大概有15%关键点具有多方向,但这些点对匹配的稳定性至为关键。

获得图像关键点主方向后,每个关键点有三个信息(x,y,σ,θ):位置、尺度、方向。由此我们可以确定一个SIFT特征区域。通常使用一个带箭头的圆或直接使用箭头表示SIFT区域的三个值:中心表示特征点位置,半径表示关键点尺度(r=2.5σ),箭头表示主方向。具有多个方向的关键点可以复制成多份,然后将方向值分别赋给复制后的关键点。如下图:

源码

// Computes a gradient orientation histogram at a specified pixel
// 计算特定点的梯度方向直方图
static float calcOrientationHist( const Mat& img, Point pt, int radius,
float sigma, float* hist, int n )
{
//len:2r+1也就是以r为半径的圆(正方形)像素个数
int i, j, k, len = (radius*+)*(radius*+); float expf_scale = -.f/(.f * sigma * sigma);
AutoBuffer<float> buf(len* + n+);
float *X = buf, *Y = X + len, *Mag = X, *Ori = Y + len, *W = Ori + len;
float* temphist = W + len + ; for( i = ; i < n; i++ )
temphist[i] = .f; // 图像梯度直方图统计的像素范围
for( i = -radius, k = ; i <= radius; i++ )
{
int y = pt.y + i;
if( y <= || y >= img.rows - )
continue;
for( j = -radius; j <= radius; j++ )
{
int x = pt.x + j;
if( x <= || x >= img.cols - )
continue; float dx = (float)(img.at<short>(y, x+) - img.at<short>(y, x-));
float dy = (float)(img.at<short>(y-, x) - img.at<short>(y+, x)); X[k] = dx; Y[k] = dy; W[k] = (i*i + j*j)*expf_scale;
k++;
}
} len = k; // compute gradient values, orientations and the weights over the pixel neighborhood
exp(W, W, len);
fastAtan2(Y, X, Ori, len, true);
magnitude(X, Y, Mag, len); // 计算直方图的每个bin
for( k = ; k < len; k++ )
{
int bin = cvRound((n/.f)*Ori[k]);
if( bin >= n )
bin -= n;
if( bin < )
bin += n;
temphist[bin] += W[k]*Mag[k];
} // smooth the histogram
// 高斯平滑
temphist[-] = temphist[n-];
temphist[-] = temphist[n-];
temphist[n] = temphist[];
temphist[n+] = temphist[];
for( i = ; i < n; i++ )
{
hist[i] = (temphist[i-] + temphist[i+])*(.f/.f) +
(temphist[i-] + temphist[i+])*(.f/.f) +
temphist[i]*(.f/.f);
} // 得到主方向
float maxval = hist[];
for( i = ; i < n; i++ )
maxval = std::max(maxval, hist[i]); return maxval;
}

这一步比较简单~参见《SIFT原理与源码分析》。

本文转自:http://blog.csdn.net/xiaowei_cqu/article/details/8096072

【OpenCV】SIFT原理与源码分析:方向赋值的更多相关文章

  1. OpenCV SIFT原理与源码分析

    http://blog.csdn.net/xiaowei_cqu/article/details/8069548 SIFT简介 Scale Invariant Feature Transform,尺度 ...

  2. 【OpenCV】SIFT原理与源码分析:DoG尺度空间构造

    原文地址:http://blog.csdn.net/xiaowei_cqu/article/details/8067881 尺度空间理论   自然界中的物体随着观测尺度不同有不同的表现形态.例如我们形 ...

  3. 【OpenCV】SIFT原理与源码分析:关键点描述

    <SIFT原理与源码分析>系列文章索引:http://www.cnblogs.com/tianyalu/p/5467813.html 由前一篇<方向赋值>,为找到的关键点即SI ...

  4. 【OpenCV】SIFT原理与源码分析:关键点搜索与定位

    <SIFT原理与源码分析>系列文章索引:http://www.cnblogs.com/tianyalu/p/5467813.html 由前一步<DoG尺度空间构造>,我们得到了 ...

  5. 【OpenCV】SIFT原理与源码分析

    SIFT简介 Scale Invariant Feature Transform,尺度不变特征变换匹配算法,是由David G. Lowe在1999年(<Object Recognition f ...

  6. OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波

    http://blog.csdn.net/chenyusiyuan/article/details/8710462 OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波 201 ...

  7. ConcurrentHashMap实现原理及源码分析

    ConcurrentHashMap实现原理 ConcurrentHashMap源码分析 总结 ConcurrentHashMap是Java并发包中提供的一个线程安全且高效的HashMap实现(若对Ha ...

  8. HashMap和ConcurrentHashMap实现原理及源码分析

    HashMap实现原理及源码分析 哈希表(hash table)也叫散列表,是一种非常重要的数据结构,应用场景及其丰富,许多缓存技术(比如memcached)的核心其实就是在内存中维护一张大的哈希表, ...

  9. (转)ReentrantLock实现原理及源码分析

    背景:ReetrantLock底层是基于AQS实现的(CAS+CHL),有公平和非公平两种区别. 这种底层机制,很有必要通过跟踪源码来进行分析. 参考 ReentrantLock实现原理及源码分析 源 ...

随机推荐

  1. Spring Cloud(一):服务治理技术概览【Finchley 版】

    Spring Cloud(一):服务治理技术概览[Finchley 版]  发表于 2018-04-14 |  更新于 2018-05-07 |  Spring Cloud Netflix 是 Spr ...

  2. mui搜索框 搜索点击事件

    <div class="mui-input-row mui-search"> <input type="search" class=" ...

  3. windows下sublime text的node.js开发环境搭建

    首先安装sublime text3,百度一堆,自己找吧.理论上sublime text2应该也可以.我只能说一句:这个软件实在是太强悍了. 跨平台,丰富的插件体系,加上插件基本上就是一个强悍的ide了 ...

  4. winform圆角窗体实现

    winform圆角窗体实现 1.窗体的FormBorderStyle设置成None,不要控制边框 2.TransparencyKey和BackColor颜色设置成相同的,这样,窗体就透明了 3.以此为 ...

  5. js页面跳转,url带url参数解决方案

    今天,在做一个项目的时候,向后端发送了一个Ajax请求,后端返回了一个字符串,告诉我未登录.那么我需要跳转到登录页面,同时告诉登录页面,登录成功后,需要跳回的url.也就是标题所说,url中的一个参数 ...

  6. python format用法详解

    #常用方法:print('{0},{1}'.format('zhangk', 32)) print('{},{},{}'.format('zhangk','boy',32)) print('{name ...

  7. Python 深浅复制

    (一)浅复制 复制列表最简单的方式是使用内置类型的构造方法: >>> l1 = [1, [2, 3], (4, 5)] >>> l2 = list(l1) > ...

  8. ES6的新特性(14)——Iterator 和 for...of 循环

    Iterator 和 for...of 循环 Iterator(遍历器)的概念 JavaScript 原有的表示“集合”的数据结构,主要是数组(Array)和对象(Object),ES6 又添加了Ma ...

  9. 【探路者】团队中的每一次感动——Alpha版

    我是[探路者]团队的leader翟宇豪.在软件工程课程开始时,当听说有团队作业这个任务时,我个人还是对leader这个角色很期待的.我很希望通过自己的努力,让我所在的团队变得更好,让组里的每一个成员在 ...

  10. 操作系统之实验二Step1-有序顺序表

    实验二Step1-有序顺序表 专业:商业软件工程     班级:商软2班     姓名:甘佳萍     学号:201406114207 实验要求:初始化 输入数组元素个数. 输入n个数,排序输出. 存 ...