洛谷P2398 GCD SUM

题目描述

for i=1 to n

for j=1 to n

 sum+=gcd(i,j)

给出n求sum. gcd(x,y)表示x,y的最大公约数.

输入输出格式

输入格式:

n

输出格式:

sum

输入输出样例

输入样例#1:

2

输出样例#1:

5

说明

数据范围 30% n<=3000 60% 7000<=n<=7100 100% n<=100000

Solution

这道题的做法貌似很多...如果你同时会狄利克雷卷积和莫比乌斯反演的话也可以强行反演一波,反正蒟蒻我是不会卷的,所以在这里介绍另外一种做法

一个式子描述题意\(ans=\sum _{i=1}^{n}\sum_{j=1}^{n}gcd(i,j)\)

直接暴力肯定是不行的,我们想一下有没有办法求出一个数它作为\(gcd\)的贡献呢?

对于两个数\(gcd(a,b)=1\to gcd(ka,kb)=k(ka<=n,kb<=n)\),所以k作为\(gcd\)的贡献就是\(gcd(x,y)=k\)的数对的对数,还不准确,因为数对\((x,y),(y,x)\),分别对答案都有贡献,但x=y的情况只能算一次,所以是 数对的个数*2-1,那么关键就在于怎么快速算出这个对数

我们发现\(n\)以内\(gcd\)为\(k\)的对数,实际上就是\(\lfloor\frac{n}{k}\rfloor\)以内gcd为1的数对的对数,这其实就是\(\lfloor\frac{n}{k}\rfloor\)以内每个数的欧拉函数的值之和,即\(2\times \sum_{i=1}^{\lfloor\frac{n}{k}\rfloor}\phi(i)-1\),这个对数*数值就是每个数的贡献

线性筛一遍欧拉函数求前缀和就可以了....

Code

#include<bits/stdc++.h>
#define in(i) (i=read())
#define il extern inline
#define rg register
#define mid ((l+r)>>1)
#define Min(a,b) ((a)<(b)?(a):(b))
#define Max(a,b) ((a)>(b)?(a):(b))
#define lol long long
using namespace std; const lol N=1e5+10; lol read() {
lol ans=0, f=1; char i=getchar();
while (i<'0' || i>'9') {if(i=='-') f=-1; i=getchar();}
while (i>='0' && i<='9') ans=(ans<<1)+(ans<<3)+(i^48), i=getchar();
return ans*f;
} lol n,ans,cnt,vis[N],prime[N],phi[N]={0,1}; void init() {
for (lol i=2;i<=N-10;i++) {
if (!vis[i]) prime[++cnt]=i,phi[i]=i-1;
for (lol j=1;j<=cnt && prime[j]*i<=N-10;j++) {
vis[i*prime[j]]=1;
if(i%prime[j]==0) {phi[i*prime[j]]=phi[i]*prime[j]; break;}
else phi[i*prime[j]]=phi[i]*(prime[j]-1);
}
}for (lol i=1;i<=N-10;i++) phi[i]+=phi[i-1];
} int main()
{
in(n); init();
for (lol i=1;i<=n;i++) ans+=(2*phi[n/i]-1)*i;
cout<<ans<<endl;
}

洛谷P2398 GCD SUM (数学)的更多相关文章

  1. 洛谷P2398 GCD SUM [数论,欧拉筛]

    题目传送门 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式 ...

  2. 洛谷P2398 GCD SUM

    题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式: n 输出格式: sum ...

  3. 洛谷 P2398 GCD SUM || uva11417,uva11426,uva11424,洛谷P1390,洛谷P2257,洛谷P2568

    https://www.luogu.org/problemnew/show/P2398 $原式=\sum_{k=1}^n(k\sum_{i=1}^n\sum_{j=1}^n[(i,j)=k])$ 方法 ...

  4. 洛谷 P2398 GCD SUM 题解

    题面 挺有意思的. 设f[i]表示gcd(i,j)=i的个数,g[i]表示k|gcd(i,j)的个数; g[i]=(n/i)*(n/i); g[i]=f[i]+f[2i]+f[3i]+...; 所以f ...

  5. 洛谷 P1890 gcd区间

    P1890 gcd区间 题目提供者 洛谷OnlineJudge 标签 数论(数学相关) 难度 普及/提高- 题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R] ...

  6. P2398 GCD SUM

    P2398 GCD SUM一开始是憨打表,后来发现打多了,超过代码长度了.缩小之后是30分,和暴力一样.正解是,用f[k]表示gcd为k的一共有多少对.ans=sigma k(1->n) k*f ...

  7. 洛谷P2568 GCD(线性筛法)

    题目链接:传送门 题目: 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 ...

  8. 洛谷P2568 GCD (欧拉函数/莫比乌斯反演)

    P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入 ...

  9. 洛谷P1445 [Violet] 樱花 (数学)

    洛谷P1445 [Violet] 樱花 题目背景 我很愤怒 题目描述 求方程 1/X+1/Y=1/(N!) 的正整数解的组数,其中N≤10^6. 解的组数,应模1e9+7. 输入输出格式 输入格式: ...

随机推荐

  1. python程序设计——面向对象程序设计:方法

    类中定义的方法分为四类:公有方法,私有方法,静态方法,类方法 公有方法.私有方法都属于对象,私有方法的名字以"__"开始 每个对象都有自己的公有方法和私有方法,这两类方法可以访问属 ...

  2. docker应用容器化准则—12 factor

    在云的时代,越来越多的传统应用需要迁移到云环境下,新应用也要求能适应云的架构设计和开发模式.而12-factor提供了一套标准的云原生应用开发的最佳原则. 在容器云项目中应用容器化主要参考12-Fac ...

  3. python---json.dumps 与 json.loads /json.dump 和json.load区别

    json.dumps 是将python的数据类型进行json的编码,生成json格式的数据,举例json_data = json.dumps(str)  str为python的字符串类型数据,生成的j ...

  4. 《C》VS控制台应用

    源(c)文件:主要是源码,包括程序入口,函数的实现 头(h)文件:主要是定义的函数声明 资源(rc)文件:程序中用到的辅助资源,比如位图,图标资源 解决VS2015安装后stdio.h ucrtd.l ...

  5. struts-resultType属性

    1.默认dispatcher:forward方式,服务器端跳转 2.redirect:客户端跳转 3.chain:Action转发,forward方式,服务器端跳转action 4.redirectA ...

  6. jquery新版本旧版本之间的坑

    JQuery自1.6.1版本开始增加一些属性,使用时尽量使用这些新的属性,例如:selected.checked.在高版本中赋值时最好用prop,如果用attr就会出现赋值不成功的问题, 一般自定义属 ...

  7. Unicode 和 UTF-8 有何区别

    作者:于洋链接:https://www.zhihu.com/question/23374078/answer/69732605来源:知乎著作权归作者所有,转载请联系作者获得授权. ========== ...

  8. FivePlus——团队展示

    光耀101  <光耀101>是福州大学数计学院计算机专业推出的中国首部程序猿脱发养成节目.由张栋担任发起人,刘晨瑶.畅畅担任导师.  该节目召集了你猜多少位选手,通过任务.训练.考核,让选 ...

  9. 福大软工1816:Beta(1/7)

    Beta 冲刺 (1/7) 队名:第三视角 组长博客链接 本次作业链接 团队部分 团队燃尽图 工作情况汇报 张扬(组长) 过去两天完成了哪些任务 文字/口头描述 答辩 组织会议 复习课本 展示GitH ...

  10. Java中的断言assert

    Java陷阱之assert关键字   一.概述   在C和C++语言中都有assert关键,表示断言. 在Java中,同样也有assert关键字,表示断言,用法和含义都差不多.   二.语法   在J ...