洛谷P2398 GCD SUM

题目描述

for i=1 to n

for j=1 to n

 sum+=gcd(i,j)

给出n求sum. gcd(x,y)表示x,y的最大公约数.

输入输出格式

输入格式:

n

输出格式:

sum

输入输出样例

输入样例#1:

2

输出样例#1:

5

说明

数据范围 30% n<=3000 60% 7000<=n<=7100 100% n<=100000

Solution

这道题的做法貌似很多...如果你同时会狄利克雷卷积和莫比乌斯反演的话也可以强行反演一波,反正蒟蒻我是不会卷的,所以在这里介绍另外一种做法

一个式子描述题意\(ans=\sum _{i=1}^{n}\sum_{j=1}^{n}gcd(i,j)\)

直接暴力肯定是不行的,我们想一下有没有办法求出一个数它作为\(gcd\)的贡献呢?

对于两个数\(gcd(a,b)=1\to gcd(ka,kb)=k(ka<=n,kb<=n)\),所以k作为\(gcd\)的贡献就是\(gcd(x,y)=k\)的数对的对数,还不准确,因为数对\((x,y),(y,x)\),分别对答案都有贡献,但x=y的情况只能算一次,所以是 数对的个数*2-1,那么关键就在于怎么快速算出这个对数

我们发现\(n\)以内\(gcd\)为\(k\)的对数,实际上就是\(\lfloor\frac{n}{k}\rfloor\)以内gcd为1的数对的对数,这其实就是\(\lfloor\frac{n}{k}\rfloor\)以内每个数的欧拉函数的值之和,即\(2\times \sum_{i=1}^{\lfloor\frac{n}{k}\rfloor}\phi(i)-1\),这个对数*数值就是每个数的贡献

线性筛一遍欧拉函数求前缀和就可以了....

Code

#include<bits/stdc++.h>
#define in(i) (i=read())
#define il extern inline
#define rg register
#define mid ((l+r)>>1)
#define Min(a,b) ((a)<(b)?(a):(b))
#define Max(a,b) ((a)>(b)?(a):(b))
#define lol long long
using namespace std; const lol N=1e5+10; lol read() {
lol ans=0, f=1; char i=getchar();
while (i<'0' || i>'9') {if(i=='-') f=-1; i=getchar();}
while (i>='0' && i<='9') ans=(ans<<1)+(ans<<3)+(i^48), i=getchar();
return ans*f;
} lol n,ans,cnt,vis[N],prime[N],phi[N]={0,1}; void init() {
for (lol i=2;i<=N-10;i++) {
if (!vis[i]) prime[++cnt]=i,phi[i]=i-1;
for (lol j=1;j<=cnt && prime[j]*i<=N-10;j++) {
vis[i*prime[j]]=1;
if(i%prime[j]==0) {phi[i*prime[j]]=phi[i]*prime[j]; break;}
else phi[i*prime[j]]=phi[i]*(prime[j]-1);
}
}for (lol i=1;i<=N-10;i++) phi[i]+=phi[i-1];
} int main()
{
in(n); init();
for (lol i=1;i<=n;i++) ans+=(2*phi[n/i]-1)*i;
cout<<ans<<endl;
}

洛谷P2398 GCD SUM (数学)的更多相关文章

  1. 洛谷P2398 GCD SUM [数论,欧拉筛]

    题目传送门 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式 ...

  2. 洛谷P2398 GCD SUM

    题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式: n 输出格式: sum ...

  3. 洛谷 P2398 GCD SUM || uva11417,uva11426,uva11424,洛谷P1390,洛谷P2257,洛谷P2568

    https://www.luogu.org/problemnew/show/P2398 $原式=\sum_{k=1}^n(k\sum_{i=1}^n\sum_{j=1}^n[(i,j)=k])$ 方法 ...

  4. 洛谷 P2398 GCD SUM 题解

    题面 挺有意思的. 设f[i]表示gcd(i,j)=i的个数,g[i]表示k|gcd(i,j)的个数; g[i]=(n/i)*(n/i); g[i]=f[i]+f[2i]+f[3i]+...; 所以f ...

  5. 洛谷 P1890 gcd区间

    P1890 gcd区间 题目提供者 洛谷OnlineJudge 标签 数论(数学相关) 难度 普及/提高- 题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R] ...

  6. P2398 GCD SUM

    P2398 GCD SUM一开始是憨打表,后来发现打多了,超过代码长度了.缩小之后是30分,和暴力一样.正解是,用f[k]表示gcd为k的一共有多少对.ans=sigma k(1->n) k*f ...

  7. 洛谷P2568 GCD(线性筛法)

    题目链接:传送门 题目: 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 ...

  8. 洛谷P2568 GCD (欧拉函数/莫比乌斯反演)

    P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入 ...

  9. 洛谷P1445 [Violet] 樱花 (数学)

    洛谷P1445 [Violet] 樱花 题目背景 我很愤怒 题目描述 求方程 1/X+1/Y=1/(N!) 的正整数解的组数,其中N≤10^6. 解的组数,应模1e9+7. 输入输出格式 输入格式: ...

随机推荐

  1. HP VC模块Server Profile配置快速参考(With SUS)

    以管理员身份登录VCM 准备进行Server Profiles的配置 在左侧导航栏中找到并点击"Server Profiles",在右侧主窗口的左下角点击"Add&quo ...

  2. hdu - 6282,2018CCPC湖南全国邀请赛G题,字符串,规律

    HDU – 6282 http://acm.hdu.edu.cn/showproblem.php?pid=6282 by Hzu_Tested 题意:给出两个字符串S和T,只由a,b,c三种字符组成( ...

  3. Docker 快速入门教程

    本文目的是给几乎从未接触过docker,或者仅仅是听说或者通过新闻了解过Docker的同学 通过一个已有的Docker仓库构建和提交自己的Docker 镜像 这里会涉及到一些概念,但是不单独介绍 这里 ...

  4. dp算法之硬币找零问题

    题目:硬币找零 题目介绍:现在有面值1.3.5元三种硬币无限个,问组成n元的硬币的最小数目? 分析:现在假设n=10,画出状态分布图: 硬币编号 硬币面值p 1 1 2 3 3 5 编号i/n总数j ...

  5. springjdbc使用c3p0连接池报错 java.lang.NoClassDefFoundError: com/mchange/v2/ser/Indirector

    MyMaincom.test.sunc.MyMaintestMethod(com.test.sunc.MyMain)org.springframework.beans.factory.BeanCrea ...

  6. Windows下使用7-zip命令自动备份文件

    在上一篇博文中,介绍了使用WinRAR自动备份文件,后来改用了腾讯云服务器,上面默认没有安装WinRAR,只有7-zip,又不想在服务器上安装许多软件,就查了下7-zip的命令,贴出来备忘~ 系统环境 ...

  7. 第一次ScrumMeeting博客:团队任务分解

    团队任务分解 1. 主要任务 Alpha阶段结束后,我们要实现一个较为简陋的用户系统,并实现资源的上传和下载功能,完成"贡献点"相关内容并进行用户行为观察,以便Beta阶段完善.除 ...

  8. mac react-native从零开始android真机测试

    1. 安装android相关jdk,(https://blog.csdn.net/vvv_110/article/details/72897142) 2. 手机和mac使用usb连接, 手机开发者设置 ...

  9. Kotlin 学习笔记(一)

    (Kotlin 学习笔记的文档结构基本按照 Java 核心技术一书的目录排列) 基本程序设计结构 数据类型 数字 类型 宽度 Double 64 Float 32 Long 64 Int 32 Sho ...

  10. mysql 多查询临时表的运用

    SELECT * from (select count(*) imgCount1 from imagetable where SeriesID = '1201061992020630292018092 ...