TensorFlow 是一个用于研究和生产的开放源代码机器学习库。TensorFlow 提供了各种 API,可供初学者和专家在桌面、移动、网络和云端环境下进行开发。

TensorFlow是采用数据流图(data flow graphs)来计算,所以首先我们得创建一个数据流流图,然后再将我们的数据(数据以张量(tensor)的形式存在)放在数据流图中计算. 节点(Nodes)在图中表示数学操作,图中的边(edges)则表示在节点间相互联系的多维数据数组, 即张量(tensor)。训练模型时tensor会不断的从数据流图中的一个节点flow到另一节点, 这就是TensorFlow名字的由来。

TensorFlowd的特性:

1.灵活性

2.可移植性

3.多语言支持

4.高效性

Graph:要组装的结构,由许多操作组成,其中的每个连接点代表一种操作

op:接受(流入)零个或多个输入(液体),返回(流出)零个或多个输出

张量是tensorflow中的基本数据结构,张量有很多种,TensorFlow用张量这种数据结构来表示所有的数据.你可以把一个张量想象成一个n维的数组或列表.一个张量有一个静态类型和动态类型的维数.张量可以在图中的节点之间流通.其实张量更代表的就是一种多位数组。在tensorflow中,有很多操作张量的函数,有生成张量、创建随机张量、张量类型与形状变换和张量的切片与运算。

张量从流图的一端流动到另一端的计算过程。它生动形象地描述了复杂数据结构在人工神经网中的流动、传输、分析和处理模式

tensorflow程序应用统计:

import tensorflow as tf
from tensorflow import keras

# Helper libraries
import numpy as np
import matplotlib.pyplot as plt

print(tf.__version__)
fashion_mnist = keras.datasets.fashion_mnist

(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
fashion_mnist = keras.datasets.fashion_mnist

class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
len(train_labels)

len(test_labels)
plt.figure()
plt.imshow(train_images[0])
plt.colorbar()
plt.grid(False)
plt.show()
train_images = train_images / 255.0

test_images = test_images / 255.0
plt.figure(figsize=(10,10))
for i in range(25):
plt.subplot(5,5,i+1)
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(train_images[i], cmap=plt.cm.binary)
plt.xlabel(class_names[train_labels[i]])
plt.show()
model = keras.Sequential([
keras.layers.Flatten(input_shape=(28, 28)),
keras.layers.Dense(128, activation='relu'),
keras.layers.Dense(10)
])
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
model.fit(train_images, train_labels, epochs=10)
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)

print('\nTest accuracy:', test_acc)
probability_model = tf.keras.Sequential([model,
tf.keras.layers.Softmax()])
predictions = probability_model.predict(test_images)

np.argmax(predictions[0])

def plot_image(i, predictions_array, true_label, img):
predictions_array, true_label, img = predictions_array, true_label[i], img[i]
plt.grid(False)
plt.xticks([])
plt.yticks([])

plt.imshow(img, cmap=plt.cm.binary)

predicted_label = np.argmax(predictions_array)
if predicted_label == true_label:
color = 'blue'
else:
color = 'red'

plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label],
100*np.max(predictions_array),
class_names[true_label]),
color=color)

def plot_value_array(i, predictions_array, true_label):
predictions_array, true_label = predictions_array, true_label[i]
plt.grid(False)
plt.xticks(range(10))
plt.yticks([])
thisplot = plt.bar(range(10), predictions_array, color="#777777")
plt.ylim([0, 1])
predicted_label = np.argmax(predictions_array)

thisplot[predicted_label].set_color('red')
thisplot[true_label].set_color('blue')
i = 0
plt.figure(figsize=(6, 3))
plt.subplot(1, 2, 1)
plot_image(i, predictions[i], test_labels, test_images)
plt.subplot(1, 2, 2)
plot_value_array(i, predictions[i], test_labels)
plt.show()
i = 12
plt.figure(figsize=(6, 3))
plt.subplot(1, 2, 1)
plot_image(i, predictions[i], test_labels, test_images)
plt.subplot(1, 2, 2)
plot_value_array(i, predictions[i], test_labels)
plt.show()
# Plot the first X test images, their predicted labels, and the true labels.
# Color correct predictions in blue and incorrect predictions in red.
num_rows = 5
num_cols = 3
num_images = num_rows * num_cols
plt.figure(figsize=(2 * 2 * num_cols, 2 * num_rows))
for i in range(num_images):
plt.subplot(num_rows, 2 * num_cols, 2 * i + 1)
plot_image(i, predictions[i], test_labels, test_images)
plt.subplot(num_rows, 2 * num_cols, 2 * i + 2)
plot_value_array(i, predictions[i], test_labels)
plt.tight_layout()
plt.show()
# Grab an image from the test dataset.
img = test_images[1]

print(img.shape)
# Add the image to a batch where it's the only member.
img = (np.expand_dims(img, 0))

print(img.shape)
predictions_single = probability_model.predict(img)

print(predictions_single)
plot_value_array(1, predictions_single[0], test_labels)
_ = plt.xticks(range(10), class_names, rotation=45)
np.argmax(predictions_single[0])

tensorflow读书笔记的更多相关文章

  1. 机器学习实战_基于Scikit-Learn和Tensorflow读书笔记

    第一部分 机器学习基础 第二部分 神经网络和深度学习 第9章 运行Tensorflow 分布式系统:分布式系统的定义是这个系统建立在网络的操作系统,具有高度的内聚性和透明性,它与网络的区别在于高层软件 ...

  2. 机器学习实战:基于Scikit-Learn和TensorFlow 读书笔记 第6章 决策树

    数据挖掘作业,要实现决策树,现记录学习过程 win10系统,Python 3.7.0 构建一个决策树,在鸢尾花数据集上训练一个DecisionTreeClassifier: from sklearn. ...

  3. TensorFlow学习笔记1-入门

    TensorFlow学习笔记1-入门 作者: YunYuan *** 写在前面 本笔记是我学习TensorFlow官方文档中文版的读书笔记,由于尚未搭建好Github的个人博客的评论功能,故尚不方便与 ...

  4. 读书笔记汇总 - SQL必知必会(第4版)

    本系列记录并分享学习SQL的过程,主要内容为SQL的基础概念及练习过程. 书目信息 中文名:<SQL必知必会(第4版)> 英文名:<Sams Teach Yourself SQL i ...

  5. 读书笔记--SQL必知必会18--视图

    读书笔记--SQL必知必会18--视图 18.1 视图 视图是虚拟的表,只包含使用时动态检索数据的查询. 也就是说作为视图,它不包含任何列和数据,包含的是一个查询. 18.1.1 为什么使用视图 重用 ...

  6. 《C#本质论》读书笔记(18)多线程处理

    .NET Framework 4.0 看(本质论第3版) .NET Framework 4.5 看(本质论第4版) .NET 4.0为多线程引入了两组新API:TPL(Task Parallel Li ...

  7. C#温故知新:《C#图解教程》读书笔记系列

    一.此书到底何方神圣? 本书是广受赞誉C#图解教程的最新版本.作者在本书中创造了一种全新的可视化叙述方式,以图文并茂的形式.朴实简洁的文字,并辅之以大量表格和代码示例,全面.直观地阐述了C#语言的各种 ...

  8. C#刨根究底:《你必须知道的.NET》读书笔记系列

    一.此书到底何方神圣? <你必须知道的.NET>来自于微软MVP—王涛(网名:AnyTao,博客园大牛之一,其博客地址为:http://anytao.cnblogs.com/)的最新技术心 ...

  9. Web高级征程:《大型网站技术架构》读书笔记系列

    一.此书到底何方神圣? <大型网站技术架构:核心原理与案例分析>通过梳理大型网站技术发展历程,剖析大型网站技术架构模式,深入讲述大型互联网架构设计的核心原理,并通过一组典型网站技术架构设计 ...

  10. LOMA280保险原理读书笔记

    LOMA是国际金融保险管理学院(Life Office Management Association)的英文简称.国际金融保险管理学院是一个保险和金融服务机构的国际组织,它的创建目的是为了促进信息交流 ...

随机推荐

  1. 喜欢用Map却从未遭遇内存泄露的Java程序员上辈子都是神仙

    前言 点进来这篇文章的大概有两种人,一种是喜欢用Map的想看看自己是不是有可能也会踩雷,一种是不喜欢用Map的想进来看看那些喜欢用的人是怎么踩雷的. 那你要失望了,我只是单纯把公司最近代码审查时一个关 ...

  2. 论文翻译:2022_DNS_1th:Multi-scale temporal frequency convolutional network with axial attention for speech enhancement

    论文地址:带轴向注意的多尺度时域频率卷积网络语音增强 论文代码:https://github.com/echocatzh/MTFAA-Net 引用:Zhang G, Yu L, Wang C, et ...

  3. 《MySQL必知必会》之快速入门游标和触发器

    第二十四章 使用游标 本章将介绍什么是游标以及如何使用游标 游标 之前的select语句检索出来的数据,没有办法得到第一行或者下一行 有时,需要在检索出来的行中前进或后退一行或多行.这就是使用游标的原 ...

  4. 常用内置模块之collections模块、时间模块、随机数random模块

    今日内容回顾 目录 今日内容回顾 包的具体使用 编程思想的转变 软件开发目录规范 常用内置模块之collections模块 常用内置模块之时间模块 常用内置模块之随机数random模块 报的具体使用 ...

  5. 速记·python 123章

    第一.二.三章 初识python 1.1 Python的概述 开发环境:Python 开发工具:IDLE(Python自带) 1.python的特点:代码简单.开发速度快.容易学习:有丰富的库:&qu ...

  6. 3_多维数组转一维数组 reduce()

    一,二维数组转一维数组 1 //1. 二维数组转一维数组 2 let arr = [[0,1],[2,3],[4,5]] 3 let newArr = arr.reduce((pre,cur) =&g ...

  7. 《STL源码剖析》Sort排序分析

    整体而言: sort算法在数据量大时采用Quick Sort(快速排序),一旦分段后的数据量小于某个门槛,为避免Quick Sort的递归调用带来过大的额外负担,就改用Insertion Sort(插 ...

  8. ansible离线安装k8s v1.25版本

    Kubernetes v1.25 企业级高可用集群自动部署(离线版) 注:确保所有节点系统时间一致 操作系统要求:CentOS7.x_x64 1.找一台服务器安装Ansible # yum insta ...

  9. npm 中设置环境NODE_ENV变量,判断失败打印process.env.NODE_ENV确实是"development",但是判断process.env.NODE_ENV === "development" 是false

    通过package.json 的scripts脚本 修改NODE_ENV的值来区分开发环境和生产环境. "scripts": { "build": " ...

  10. 局部内部类定义-局部内部类的final问题

    局部内部类定义 定义格式: 修饰符 class 外部类名称 { 修饰符 返回值类型 外部类方法名(参数列表){ class 局部内部类名称{// ... } } } 小杰一下类的权限修饰符: publ ...