51Nod: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1136

基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题
 
对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目。此函数以其首名研究者欧拉命名,它又称为Euler's totient function、φ函数、欧拉商数等。例如:φ(8) = 4(Phi(8) = 4),因为1,3,5,7均和8互质。

 
Input
输入一个数N。(2 <= N <= 10^9)
Output
输出Phi(n)。
Input示例
8
Output示例
4

题解:

(1), 对N进行因子分解,得到若干个素因子,那么在 [1, n] 之间, 凡是这些素因子的倍数都是与N不互素的

(2), 使用容斥原理,对于素因子 P1, p2, ... pK,  比如P1就存在着 [p1, 2*p1, 3*p1, ... num1*p1],  (num1*p1 <= N),  可以得到:num1 = n/p1;

(3), 另外多个素因子之间可能重复计算了公倍数, 利用 Num(p1) + Num(p2) + Num(p2) - Num(p1*p2) - Num(p2*p3) - Num(p3*p1) + Num(p1*p2*p3) 计算出实际的个数。

(4), 最后,[1, N] 之间有N 个数字, 所以, N - 素因子及其倍数的个数, 得到答案。

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
using namespace std; const int maxn = 2000000;
const int maxm = 100000; bool prime[maxn];
int cnt, p[maxm], fac[maxm], output[maxm]; void IsPrime(){
memset(prime, false, sizeof(prime));
cnt = 0;
for(int i=2; i<maxn; ++i){
if(!prime[i]){
p[cnt++] = i;
for(int j=i+i; j<maxn; j+=i){
prime[j] = true;
}
}
}
} int solve(int n){
int k, num = 0, t = 0, tmp = n;
for(int i=0; p[i]*p[i]<=n; ++i){
if(n%p[i] == 0){
fac[num++] = p[i];
while(n%p[i]==0){ n=n/p[i]; }
}
}
if(n > 1){
fac[num++] = n;
}
output[t++] = -1;
for(int i=0; i<num; ++i){
k = t;
for(int j=0; j<k; ++j){
output[t++] = output[j]*fac[i]*(-1);
}
}
int sum = 0;
for(int i=1; i<t; ++i){
sum = sum + tmp/output[i];
}
return sum;
} int main(){
//freopen("in.txt", "r", stdin); IsPrime();
int ans, n;
while(scanf("%d", &n) != EOF){
ans = solve(n);
printf("%d\n", (n - ans) );
}
return 0;
}

  

Reference: http://www.cnblogs.com/jiangjing/archive/2013/06/03/3115470.html

51Nod-1136 欧拉函数的更多相关文章

  1. 51Nod 1136 欧拉函数 Label:数论

    对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目.此函数以其首名研究者欧拉命名,它又称为Euler's totient function.φ函数.欧拉商数等.例如:φ(8) = 4(Phi( ...

  2. (数论)51NOD 1136 欧拉函数

    对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目.此函数以其首名研究者欧拉命名,它又称为Euler's totient function.φ函数.欧拉商数等.例如:φ(8) = 4(Phi( ...

  3. [51Nod 1244] - 莫比乌斯函数之和 & [51Nod 1239] - 欧拉函数之和 (杜教筛板题)

    [51Nod 1244] - 莫比乌斯函数之和 求∑i=1Nμ(i)\sum_{i=1}^Nμ(i)∑i=1N​μ(i) 开推 ∑d∣nμ(d)=[n==1]\sum_{d|n}\mu(d)=[n== ...

  4. 51nod 1239 欧拉函数之和(杜教筛)

    [题目链接] https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239 [题目大意] 计算欧拉函数的前缀和 [题解] 我们 ...

  5. 51Nod 1239 欧拉函数前n项和 杜教筛

    http://www.51nod.com/Challenge/Problem.html#!#problemId=1239 AC代码 #include <bits/stdc++.h> #de ...

  6. 51nod 1040 欧拉函数

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1040 1040 最大公约数之和 题目来源: rihkddd 基准时间限制 ...

  7. 51nod 1239 欧拉函数之和【欧拉函数+杜教筛】

    和bzoj 3944比较像,但是时间卡的更死 设\( f(n)=\sum_{d|n}\phi(d) g(n)=\sum_{i=1}^{n}f(i) s(n)=\sum_{i=1}^{n}\phi(i) ...

  8. 51nod 1040 最大公约数之和(欧拉函数)

    1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题   给出一个n,求1-n这n个数,同n的最大公约数的和.比如: ...

  9. 51nod 1040最大公约数和(欧拉函数)

    1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 给出一个n,求1-n这n个数,同n的最大公约数 ...

随机推荐

  1. webpack初体验

    本人菜鸟一枚,最近一直在研究webpack的使用,记录下自己的学习体会,由于网上关于webpack的资源(技术博客)太多,对于初学webpack的新手来说,看着五花八门的技术博客,真是头晕眼花(可能是 ...

  2. 在SharePoint中创建可自定义属性的文件夹

    概况 阅读时间:约5分钟 适用版本:SharePoint Server 2010及以上 面向用户:普通用户.管理员.开发人员 难度指数:★★★☆☆ SharePoint中的文件夹分为2种,一种是文档库 ...

  3. IOS开发基础知识--碎片19

    1:键盘事件顺序 UIKeyboardWillShowNotification // 键盘显示之前 UIKeyboardDidShowNotification // 键盘显示完成后 UIKeyboar ...

  4. Android View的几个位置坐标关系

    1. View的边界,left, top, right, bottom(即左上右下),这些值都是相对View的父容器说的: 2. View的x, translationX, y, translatio ...

  5. Play Framework 完整实现一个APP(六)

    需要为Blog添加 查看和发表评论的功能 1.创建查看功能 Application.java中添加 show() 方法 public static void show(Long id) { Post ...

  6. Nagios学习实践系列——产品介绍篇

    Nagios介绍 Nagios是一款功能强大.优秀的开源监控系统,它能够让你发现和解决IT架构中存在的问题,避免这些问题影响到关键业务流程. Nagios最早于1999年发布,它在开源社区的影响力是相 ...

  7. SQL SERVER错误:已超过了锁请求超时时段。 (Microsoft SQL Server,错误: 1222)

    在SSMS(Microsoft SQL Server Management Studio)里面,查看数据库对应的表的时候,会遇到"Lock Request time out period e ...

  8. SELECT CAST(GETDATE() AS VARCHAR(10)) 显示不同格式的原因

    开发人员测试时,发现生产服务器与测试服务器执行SELECT CAST(GETDATE() AS VARCHAR(10))语句显示的格式不一样.如下所示 Server A Server B 其实出现这个 ...

  9. explicit抑制隐型转换

    本文出自 http://www.cnblogs.com/cutepig/ 按照默认规定,只有一个参数的构造函数也定义了一个隐式转换,将该构造函数对应数据类型的数据转换为该类对象,如下面所示: clas ...

  10. WPF 无边框透明窗体

    WindowStyle="None"--无边框,如果需要其它按钮,如缩小.放大.收缩.关闭按钮,可以自定义 AllowsTransparency="True"- ...