题目链接

http://acm.hdu.edu.cn/showproblem.php?pid=5091

Problem Description
Recently, the γ galaxies broke out Star Wars. Each planet is warring for resources. In the Star Wars, Planet X is under attack by other planets. Now, a large wave of enemy spaceships is approaching. There is a very large Beam Cannon on the Planet X, and it is very powerful, which can destroy all the spaceships in its attack range in a second. However, it takes a long time to fill the energy of the Beam Cannon after each shot. So, you should make sure each shot can destroy the enemy spaceships as many as possible.

To simplify the problem, the Beam Cannon can shot at any area in the space, and the attack area is rectangular. The rectangle parallels to the coordinate axes and cannot rotate. It can only move horizontally or vertically. The enemy spaceship in the space can be considered as a point projected to the attack plane. If the point is in the rectangular attack area of the Beam Cannon(including border), the spaceship will be destroyed.

 
Input
Input contains multiple test cases. Each test case contains three integers N(1<=N<=10000, the number of enemy spaceships), W(1<=W<=40000, the width of the Beam Cannon’s attack area), H(1<=H<=40000, the height of the Beam Cannon’s attack area) in the first line, and then N lines follow. Each line contains two integers x,y (-20000<=x,y<=20000, the coordinates of an enemy spaceship).

A test case starting with a negative integer terminates the input and this test case should not to be processed.

 
Output
Output the maximum number of enemy spaceships the Beam Cannon can destroy in a single shot for each case.
 
Sample Input
2 3 4
0 1
1 0
3 1 1
-1 0
0 1
1 0
-1
 
Sample Output
2
2
 
Source
 
Recommend
hujie   |   We have carefully selected several similar problems for you:  5932 5931 5930 5929 5928 
 
题意:在平面上有n个点,现在有一个平行于坐标轴的矩形,宽为w 高为h,可以上下左右移动,但不能旋转,求这个矩形最多能够围住多少点?
 
思路:将输入的n个点按照横坐标从小到大排序,为了计算方便,在输入的时候可以对每个点记录一个标记点(打标记),如果输入的点是  node[i].x=x  node[i].y=y  node[i].v=1  那么 加一个标记点node[i+1].x=x+w  node[i+1].y=y  node[i+1].v= -1  这样对排序后的2*n个点进行计算时,只会有长为w范围的点会被计算,走出w长度范围的点会在计算node[i+1].v=-1 时清理掉。 那么现在考虑的点都在长为w的范围内,现在只需要考虑高了,可以用线段树计算对当前点node[i] 把node[i].y~node[i].y+h的区间长度都加上node[i].v  那么线段树求得的最大值就是当前区间点的值了, 为什么是这样呢? 因为考虑的点都在长为w范围里,所以只需要考虑y值,所以可以转换为这些点在一条直线上,求长为h的线段能覆盖最多的点数,考虑线段的上端点的位置,那么一个点对上端点的贡献为y~y+h 范围,端点的值就是这条线段的覆盖值;
 
代码如下:
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
using namespace std;
typedef long long LL;
const int N=1e4+;
int n,w,h;
struct Node
{
int x,y,v;
}node[*N];
struct TNode
{
int f;
int m;
}tr[*N]; bool cmp(const Node s1,const Node s2)
{
if(s1.x==s2.x) return s1.v>s2.v;
return s1.x<s2.x;
}
void build(int l,int r,int i)
{
tr[i].f=; tr[i].m=;
if(l==r) return ;
int mid=(l+r)>>;
build(l,mid,i<<);
build(mid+,r,i<<|);
}
void pushdown(int i)
{
tr[i<<].f+=tr[i].f;
tr[i<<|].f+=tr[i].f;
tr[i<<].m+=tr[i].f;
tr[i<<|].m+=tr[i].f;
tr[i].f=;
}
void update(int l,int r,int i,int t)
{
if(l>=node[t].y&&r<=node[t].y+h)
{
tr[i].f+=node[t].v;
tr[i].m+=node[t].v;
return ;
}
if(tr[i].f!=) pushdown(i);
int mid=(l+r)>>;
if(node[t].y<=mid) update(l,mid,i<<,t);
if(node[t].y+h>mid) update(mid+,r,(i<<|),t);
tr[i].m=max(tr[i<<].m,tr[i<<|].m);
}
int main()
{
while(scanf("%d",&n)&&n>)
{
scanf("%d%d",&w,&h);
for(int i=;i<=n;i++)
{
int x,y;
scanf("%d%d",&x,&y);
node[*i-].x=x;
node[*i-].y=y+*N;
node[*i-].v=;
node[*i].x=x+w;
node[*i].y=y+*N;
node[*i].v=-;
}
sort(node+,node+*n+,cmp);
build(,*N,);
int sum=;
for(int i=;i<=*n;i++)
{
update(,*N,,i);
sum=max(sum,tr[].m);
}
printf("%d\n",sum);
}
return ;
}

补充一下:HDU  4007  和这题相似(2016 ICPC大连站热身赛)

题目链接

http://acm.hdu.edu.cn/showproblem.php?pid=4007

题意:给了n个点,求一个正方形能围住的最大点数,同样正方形平行于坐标轴;

思路:与上面的题一样,但是这题数据范围很大,线段树的数组开不了这么大,那么必须要进行离散化;

代码如下:

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <map>
using namespace std;
typedef long long LL;
LL L,R;
map<LL,LL>p;
struct Node
{
LL x,y;
LL v;
}node[];
struct TNode
{
LL m;
LL f;
}tr[];
bool cmp1(const Node s1,const Node s2)
{
if(s1.x==s2.x) return s1.v>s2.v;
return s1.x<s2.x;
}
bool cmp2(const Node s1,const Node s2)
{
return s1.y<s2.y;
}
void build(LL l,LL r,LL i)
{
tr[i].m=;
tr[i].f=;
if(l==r) return ;
LL mid=(l+r)>>;
build(l,mid,i<<);
build(mid+,r,i<<|);
}
void pushdown(LL i)
{
tr[i<<].f+=tr[i].f;
tr[i<<|].f+=tr[i].f;
tr[i<<].m+=tr[i].f;
tr[i<<|].m+=tr[i].f;
tr[i].f=;
}
void update(LL l,LL r,LL i,LL t)
{
if(l>=L&&r<=R){
tr[i].f+=t;
tr[i].m+=t;
return ;
}
pushdown(i);
LL mid=(l+r)>>;
if(L<=mid) update(l,mid,i<<,t);
if(R>mid) update(mid+,r,i<<|,t);
tr[i].m=max(tr[i<<].m,tr[i<<|].m);
}
int main()
{
LL n,r;
while(scanf("%lld%lld",&n,&r)!=EOF)
{
p.clear();
for(LL i=;i<=n;i++)
{
LL x,y;
scanf("%lld%lld",&x,&y);
node[*i-].x=x;
node[*i-].y=y;
node[*i-].v=;
node[*i-].x=x+r;
node[*i-].y=y;
node[*i-].v=-;
node[*i].x=x;
node[*i].y=y+r;
node[*i].v=;
}
sort(node+,node+*n+,cmp2);
///离散化
LL tot=,pre=-;
for(LL i=;i<=*n;i++)
{
if(node[i].y!=pre){
pre=node[i].y;
p[pre]=++tot;
}
}
sort(node+,node+*n+,cmp1);
build(,tot,);
LL sum=;
for(LL i=;i<=*n;i++)
{
if(node[i].v==) continue;
L=p[node[i].y];
R=p[node[i].y+r];
update(,tot,,node[i].v);
sum=max(sum,tr[].m);
}
printf("%lld\n",sum);
}
return ;
}

HDU 5091---Beam Cannon(线段树+扫描线)的更多相关文章

  1. [POI 2001+2014acm上海邀请赛]Gold Mine/Beam Cannon 线段树+扫描线

    Description  Byteman, one of the most deserving employee of The Goldmine of Byteland, is about to re ...

  2. hdu 5091 Beam Cannon(扫描线段树)

    题目链接:hdu 5091 Beam Cannon 题目大意:给定N个点,如今要有一个W∗H的矩形,问说最多能圈住多少个点. 解题思路:线段的扫描线,如果有点(x,y),那么(x,y)~(x+W,y+ ...

  3. HDU 1828“Picture”(线段树+扫描线求矩形周长并)

    传送门 •参考资料 [1]:算法总结:[线段树+扫描线]&矩形覆盖求面积/周长问题(HDU 1542/HDU 1828) •题意 给你 n 个矩形,求矩形并的周长: •题解1(两次扫描线) 周 ...

  4. hdu 1828 Picture(线段树扫描线矩形周长并)

    线段树扫描线矩形周长并 #include <iostream> #include <cstdio> #include <algorithm> #include &l ...

  5. HDU 6096 String 排序 + 线段树 + 扫描线

    String Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others) Problem De ...

  6. HDU 5091 Beam Cannon (扫描线思想)

    题意:移动一个矩形,使矩形内包含的点尽量多. 思路:把一个点拆成两个事件,一个进(权值为1)一个出(权值为-1),将所有点按照x排序,然后扫描,对于每个x,用一个滑窗计算一下最大值,再移动扫描线.树状 ...

  7. HDU 1542 Atlantis(线段树扫描线+离散化求面积的并)

    Atlantis Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  8. hdu 5091 Beam Cannon

    题目大意: 有n个点(n<=10000),点的坐标绝对值不超过20000,然后问你用一个w*h(1<=w,h<=40000)的矩形,矩形的边平行于坐标轴,最多能盖住多少个点. 刘汝佳 ...

  9. HDU 3265 Posters ——(线段树+扫描线)

    第一次做扫描线,然后使我对线段树的理解发生了动摇= =..这个pushup写的有点神奇.代码如下: #include <stdio.h> #include <algorithm> ...

  10. 【42.49%】【hdu 1542】Atlantis(线段树扫描线简析)

    Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s) ...

随机推荐

  1. Ajax技术使用

    <%@ page language="java" contentType="text/html; charset=UTF-8" pageEncoding= ...

  2. Workflow中InArgument与OutArgument区别

    序号 InArgument[In参数] OutArgument[Out参数] 1 可以用VS设计器在xaml中定义[In参数]  可以用VS设计器在xaml中定义[Out参数] 2 在xaml中定义的 ...

  3. img list

  4. 【译】采用MVC模式创建一个简单的javascript App

    原文标题:Build A Simple Javascript App The MVC Way 作者:joshcrawmer4 翻译人:huansky 初次翻译,翻译的不好,还请见谅 JavaScrip ...

  5. Javascript快速入门(下篇)

    Javascript, cheer up. Ajax:其通过在Web页面与服务器之间建立一个额外的处理层,这个处理层就被称为Ajax引擎,它解释来自用户的请求,在后台以异步的方式处理服务器通信,其结构 ...

  6. JS中call、apply、bind使用指南,带部分原理。

    为什么需要这些?主要是因为this,来看看this干的好事. box.onclick = function(){ function fn(){ alert(this); } fn();}; 我们原本以 ...

  7. Distribution of Data Through OCAF Tree

    Distribution of Data Through OCAF Tree OCAF数据的分配 eryar@163.com 一.作者注 Annotation 本文档主要用于说明OCAF(Open C ...

  8. JSP开发环境配置问题解答

    有过JSP开发经验的同学对于JSP开发环境的配置一定非常的很有感触,十分的繁琐,有时因为一个小的问题导致我们配置的配置前功尽弃,本篇我将重点带领大家一起探讨一下关于JSP环境配置的一些常见问题,及解决 ...

  9. Android中常用控件及属性

    在之前的博客为大家带来了很多关于Android和jsp的介绍,本篇将为大家带来,关于Andriod中常用控件及属性的使用方法,目的方便大家遗忘时,及时复习参考.好了废话不多讲,现在开始我们本篇内容的介 ...

  10. FileUpload实现文件上传(包含多文件)

    package com.hzml.serve; import java.io.File; import java.io.IOException; import java.io.PrintWriter; ...