Mathematical Induction

Mathematical Induction is a special way of proving things. It has only 2 steps:

  • Step 1. Show it is true for the first one
  • Step 2. Show that if any one is true then the next one is true

Then all are true

Have you heard of the "Domino Effect"?

  • Step 1. The first domino falls
  • Step 2. When any domino falls, the next domino falls

So ... all dominos will fall!

That is how Mathematical Induction works.

In the world of numbers we say:

  • Step 1. Show it is true for n=1
  • Step 2. Show that if n=k is true then n=k+1 is also true

How to Do it

Step 1 is usually easy, we just have to prove it is true for n=1

Step 2 is best done this way:

  • Assume it is true for n=k
  • Prove it is true for n=k+1 (we can use the n=k case as a fact.)

Step 2 can often be tricky ... because we may need to use imaginative tricks to make it work!

Like in this example:

Example: 3n−1 is a multiple of 2

Is that true? Let us find out.

1. Show it is true for n=1

31−1 = 3−1 = 2

Yes 2 is a multiple of 2. That was easy.

31−1 is true

2. Assume it is true for n=k

3k−1 is true

(Hang on! How do we know that? We don't!
It is an assumption ... that we treat
as a fact for the rest of this example)

Now, prove that 3k+1−1 is a multiple of 2

3k+1 is also 3×3k

And then split into and

And each of these are multiples of 2

Because:

  • 2×3k is a multiple of 2 (we are multiplying by 2)
  • 3k−1 is true (we said that in the assumption above)

So:

3k+1−1 is true

DONE!

Did you see how we used the 3k−1 case as being true, even though we had not proved it? That is OK, because we are relying on the Domino Effect ...

... we are asking if any domino falls will the next one fall?

So we take it as a fact (temporarily) that the "n=k" domino falls (i.e. 3k−1 is true), and see if that means the "n=k+1" domino will also fall.

Tricks

I said before that we often need to use imaginative tricks.

A common trick is to rewrite the n=k+1 case into 2 parts:

  • one part being the n=k case (which is assumed to be true)
  • the other part can then be checked to see if it is also true

We did that in the example above, and here is another one:

Example: Adding up Odd Numbers

1 + 3 + 5 + ... + (2n−1) = n2

1. Show it is true for n=1

1 = 12 is True

2. Assume it is true for n=k

1 + 3 + 5 + ... + (2k−1) = k2 is True
(An assumption!)

Now, prove it is true for "k+1"

1 + 3 + 5 + ... + (2k−1) + (2(k+1)−1) = (k+1)2   ?

We know that 1 + 3 + 5 + ... + (2k−1) = k2 (the assumption above), so we can do a replacement for all but the last term:

k2 + (2(k+1)−1) = (k+1)2

Now expand all terms:

k2 + 2k + 2 − 1 = k2 + 2k+1

And simplify:

k2 + 2k + 1 = k2 + 2k + 1

They are the same! So it is true.

So:

1 + 3 + 5 + ... + (2(k+1)−1) = (k+1)2 is True

DONE!

So there you have it!

 

 
Search :: Index :: About :: Contact :: Contribute :: Cite This Page :: Privacy

Copyright © 2014 MathsIsFun.com

 
 

[转]Mathematical Induction --数学归纳法1的更多相关文章

  1. [中英双语] 数学缩写列表 (List of mathematical abbreviations)

    List of mathematical abbreviations From Wikipedia, the free encyclopedia 数学缩写列表 维基百科,自由的百科全书 This ar ...

  2. Lecture notes of Mathematical analysis

    Lecture notes of Mathematical analysis Preliminary theory Teaching purpose: Mathematical analysis is ...

  3. Introduction to Mathematical Thinking - Week 6 - Proofs with Quantifieers

    Mthod of proof by cases 证明完所有的条件分支,然后得出结论. 证明任意 使用任意 注意,对于一个任意的东西,你不知道它的具体信息.比如对于任意正数,你不知道它是 1 还是 2等 ...

  4. c语言求平面上2个坐标点的直线距离、求俩坐标直线距离作为半径的圆的面积、递归、菲波那次数列、explode

    #include <stdio.h> #include <math.h> #include <string.h> char explode( char * str ...

  5. 【具体数学--读书笔记】1.1 The Power of Hanoi

    这一节借助汉诺塔问题引入了"Reccurent Problems". (Reccurence, 在这里解释为“the solution to each problem depend ...

  6. Python算法:推导、递归和规约

    Python算法:推导.递归和规约 注:本节中我给定下面三个重要词汇的中文翻译分别是:Induction(推导).Recursion(递归)和Reduction(规约) 本节主要介绍算法设计的三个核心 ...

  7. 蓝眼睛与红眼睛(The blue-eyed islanders puzzle)

    澳大利亚的华裔数学神童陶哲轩曾在网上贴出来一个问题 The blue-eyed islanders puzzle 让大家思考,逗大家玩儿. 说一个岛上有100个人,其中有5个红眼睛,95个蓝眼睛.这个 ...

  8. A.Kaw矩阵代数初步学习笔记 10. Eigenvalues and Eigenvectors

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  9. MOOCULUS微积分-2: 数列与级数学习笔记 5. Another comparison test

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

随机推荐

  1. DW安装步骤

    Adobe Dreamweaver CC 2015破解步骤 Adobe Dreamweaver CC 2015的安装包和破解补丁可以在这里下载.链接: http://pan.baidu.com/s/1 ...

  2. JS数组常用函数以及查找数组中是否有重复元素的三种常用方法

    阅读目录: DS01:常用的查找数组中是否有重复元素的三种方法 DS02:常用的JS函数集锦 DS01.常用的查找数组中是否有重复元素的三种方法  1. var ary = new Array(&qu ...

  3. 硬件抽象层:HAL

    本节我们研究硬件抽象层:HALHAL,它是建立在Linux驱动之上的一套程序库.刚开始介绍了为什么要在Android中加入HAL,目的有三个,一,统一硬件的调用接口.二,解决了GPL版权问题.三,针对 ...

  4. Raspberry Pi Resources-Using the UART

    参考:RPi Serial Connection 本文来自:http://www.raspberry-projects.com/pi/programming-in-c/uart-serial-port ...

  5. java基础之 超类Object

    一.概述:       Object类是所有Java类的祖先.每个类都使用 Object 作为超类.所有对象(包括数组)都实现这个类的方法.在不明确给出超类的情况下,Java会自动把Object作为要 ...

  6. java基础之 序列化

    一.序列化和反序列化的概念 把对象转换为字节序列的过程称为对象的序列化.       把字节序列恢复为对象的过程称为对象的反序列化. 对象的序列化主要有两种用途: 1) 把对象的字节序列永久地保存到硬 ...

  7. Read excel and put cell data into HashMap

    //Read excel row by row, put cell name and cell value to a map for each row. HashMap getExpectedResu ...

  8. Ext JS 4 老特征:statics 静态的变量和方法

    l   一.静态的变量和静态的方法 [译文原创Learning Ext JS 4 第51页] Statics的方法只属于类本身,而不属于任何一个实例,这就决定了我们是在定义类的内部来用statics方 ...

  9. Hibernate入门与简谈

    Hibernate jdbc Java Databases Connectivity, 他是提供了一组Java API来访问关系数据库的Java程序.这些Java API 可以使Java应用程序执行S ...

  10. HBase的基本架构及其原理介绍

    1.概述:最近,有一些工程师问我有关HBase的基本架构的问题,其实这个问题仅仅说架构是非常简单,但是需要理解.在这里,我觉得可以用HDFS的架构作为借鉴.(其实像Hadoop生态系统中的大部分组建的 ...