Mathematical Induction

Mathematical Induction is a special way of proving things. It has only 2 steps:

  • Step 1. Show it is true for the first one
  • Step 2. Show that if any one is true then the next one is true

Then all are true

Have you heard of the "Domino Effect"?

  • Step 1. The first domino falls
  • Step 2. When any domino falls, the next domino falls

So ... all dominos will fall!

That is how Mathematical Induction works.

In the world of numbers we say:

  • Step 1. Show it is true for n=1
  • Step 2. Show that if n=k is true then n=k+1 is also true

How to Do it

Step 1 is usually easy, we just have to prove it is true for n=1

Step 2 is best done this way:

  • Assume it is true for n=k
  • Prove it is true for n=k+1 (we can use the n=k case as a fact.)

Step 2 can often be tricky ... because we may need to use imaginative tricks to make it work!

Like in this example:

Example: 3n−1 is a multiple of 2

Is that true? Let us find out.

1. Show it is true for n=1

31−1 = 3−1 = 2

Yes 2 is a multiple of 2. That was easy.

31−1 is true

2. Assume it is true for n=k

3k−1 is true

(Hang on! How do we know that? We don't!
It is an assumption ... that we treat
as a fact for the rest of this example)

Now, prove that 3k+1−1 is a multiple of 2

3k+1 is also 3×3k

And then split into and

And each of these are multiples of 2

Because:

  • 2×3k is a multiple of 2 (we are multiplying by 2)
  • 3k−1 is true (we said that in the assumption above)

So:

3k+1−1 is true

DONE!

Did you see how we used the 3k−1 case as being true, even though we had not proved it? That is OK, because we are relying on the Domino Effect ...

... we are asking if any domino falls will the next one fall?

So we take it as a fact (temporarily) that the "n=k" domino falls (i.e. 3k−1 is true), and see if that means the "n=k+1" domino will also fall.

Tricks

I said before that we often need to use imaginative tricks.

A common trick is to rewrite the n=k+1 case into 2 parts:

  • one part being the n=k case (which is assumed to be true)
  • the other part can then be checked to see if it is also true

We did that in the example above, and here is another one:

Example: Adding up Odd Numbers

1 + 3 + 5 + ... + (2n−1) = n2

1. Show it is true for n=1

1 = 12 is True

2. Assume it is true for n=k

1 + 3 + 5 + ... + (2k−1) = k2 is True
(An assumption!)

Now, prove it is true for "k+1"

1 + 3 + 5 + ... + (2k−1) + (2(k+1)−1) = (k+1)2   ?

We know that 1 + 3 + 5 + ... + (2k−1) = k2 (the assumption above), so we can do a replacement for all but the last term:

k2 + (2(k+1)−1) = (k+1)2

Now expand all terms:

k2 + 2k + 2 − 1 = k2 + 2k+1

And simplify:

k2 + 2k + 1 = k2 + 2k + 1

They are the same! So it is true.

So:

1 + 3 + 5 + ... + (2(k+1)−1) = (k+1)2 is True

DONE!

So there you have it!

 

 
Search :: Index :: About :: Contact :: Contribute :: Cite This Page :: Privacy

Copyright © 2014 MathsIsFun.com

 
 

[转]Mathematical Induction --数学归纳法1的更多相关文章

  1. [中英双语] 数学缩写列表 (List of mathematical abbreviations)

    List of mathematical abbreviations From Wikipedia, the free encyclopedia 数学缩写列表 维基百科,自由的百科全书 This ar ...

  2. Lecture notes of Mathematical analysis

    Lecture notes of Mathematical analysis Preliminary theory Teaching purpose: Mathematical analysis is ...

  3. Introduction to Mathematical Thinking - Week 6 - Proofs with Quantifieers

    Mthod of proof by cases 证明完所有的条件分支,然后得出结论. 证明任意 使用任意 注意,对于一个任意的东西,你不知道它的具体信息.比如对于任意正数,你不知道它是 1 还是 2等 ...

  4. c语言求平面上2个坐标点的直线距离、求俩坐标直线距离作为半径的圆的面积、递归、菲波那次数列、explode

    #include <stdio.h> #include <math.h> #include <string.h> char explode( char * str ...

  5. 【具体数学--读书笔记】1.1 The Power of Hanoi

    这一节借助汉诺塔问题引入了"Reccurent Problems". (Reccurence, 在这里解释为“the solution to each problem depend ...

  6. Python算法:推导、递归和规约

    Python算法:推导.递归和规约 注:本节中我给定下面三个重要词汇的中文翻译分别是:Induction(推导).Recursion(递归)和Reduction(规约) 本节主要介绍算法设计的三个核心 ...

  7. 蓝眼睛与红眼睛(The blue-eyed islanders puzzle)

    澳大利亚的华裔数学神童陶哲轩曾在网上贴出来一个问题 The blue-eyed islanders puzzle 让大家思考,逗大家玩儿. 说一个岛上有100个人,其中有5个红眼睛,95个蓝眼睛.这个 ...

  8. A.Kaw矩阵代数初步学习笔记 10. Eigenvalues and Eigenvectors

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  9. MOOCULUS微积分-2: 数列与级数学习笔记 5. Another comparison test

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

随机推荐

  1. spring与mybatis三种整合方法

    spring与mybatis三种整合方法 本文主要介绍Spring与Mybatis三种常用整合方法,需要的整合架包是mybatis-spring.jar,可通过链接 http://code.googl ...

  2. MySql 获取当前节点及递归所有上级节点

    -- MySql 获取当前节点及递归所有上级节点 -- 参数说明:resultField:查询返回字段,idd 要查询的资源ID值,idFieldName ID字段名,parentIdFieldNam ...

  3. Spring整合HBase

    Spring整合HBase Spring HBase SHDP § 系统环境 § 配置HBase运行环境 § 配置Hadoop § 配置HBase § 启动Hadoop和HBase § 创建Maven ...

  4. php fastcgi_finish_request让你的程序由等待时间,瞬间完成,提高用户体验

    当PHP运行在FastCGI模式时,PHP FPM提供了一个名为fastcgi_finish_request的方法.按照文档上的说法,此方法可以提高请求的处理速度,如果有些处理可以在页面生成完后再进行 ...

  5. MRPT笔记——MRPT在VS2013中的配置

    Mobile Robot Programming Toolkit (MRPT)是一个跨平台的.开源的C++库,旨在帮助机器人研究员设计和实现SLAM.机器视觉和运动规划(避障)的算法. MRPT为移动 ...

  6. Mybatis中#{}和${}传参的区别

    1. #将传入的数据都当成一个字符串,会对自动传入的数据加一个双引号.如:order by #user_id#,如果传入的值是111,那么解析成sql时的值为order by "111&qu ...

  7. TPCH Benchmark with Impala

    1. 生成测试数据在TPC-H的官网http://www.tpc.org/tpch/上下载dbgen工具,生成数据http://www.tpc.org/tpch/spec/tpch_2_17_0.zi ...

  8. C++ 11 lambda

    转载:http://www.cnblogs.com/kedebug/p/3224561.html lambda 表达式的简单语法如下:[capture] (parameters) -> retu ...

  9. [转]Objective-c中@interface、@implementation、@protocal

    原处:http://blog.csdn.net/l271640625/article/details/8393531 以下Objective-c简称OC 从事java开发的程序员们都知道,在java中 ...

  10. 【转】关于Oracle将小于1的数字to_char后丢掉0的解决办法

    SQL代码如下: select rtrim(to_char(0.11, 'fm9990.99'), '.') from dual; 其中0.11为需要to_char的数字fm去掉字符串前面的空格999 ...