Mathematical Induction

Mathematical Induction is a special way of proving things. It has only 2 steps:

  • Step 1. Show it is true for the first one
  • Step 2. Show that if any one is true then the next one is true

Then all are true

Have you heard of the "Domino Effect"?

  • Step 1. The first domino falls
  • Step 2. When any domino falls, the next domino falls

So ... all dominos will fall!

That is how Mathematical Induction works.

In the world of numbers we say:

  • Step 1. Show it is true for n=1
  • Step 2. Show that if n=k is true then n=k+1 is also true

How to Do it

Step 1 is usually easy, we just have to prove it is true for n=1

Step 2 is best done this way:

  • Assume it is true for n=k
  • Prove it is true for n=k+1 (we can use the n=k case as a fact.)

Step 2 can often be tricky ... because we may need to use imaginative tricks to make it work!

Like in this example:

Example: 3n−1 is a multiple of 2

Is that true? Let us find out.

1. Show it is true for n=1

31−1 = 3−1 = 2

Yes 2 is a multiple of 2. That was easy.

31−1 is true

2. Assume it is true for n=k

3k−1 is true

(Hang on! How do we know that? We don't!
It is an assumption ... that we treat
as a fact for the rest of this example)

Now, prove that 3k+1−1 is a multiple of 2

3k+1 is also 3×3k

And then split into and

And each of these are multiples of 2

Because:

  • 2×3k is a multiple of 2 (we are multiplying by 2)
  • 3k−1 is true (we said that in the assumption above)

So:

3k+1−1 is true

DONE!

Did you see how we used the 3k−1 case as being true, even though we had not proved it? That is OK, because we are relying on the Domino Effect ...

... we are asking if any domino falls will the next one fall?

So we take it as a fact (temporarily) that the "n=k" domino falls (i.e. 3k−1 is true), and see if that means the "n=k+1" domino will also fall.

Tricks

I said before that we often need to use imaginative tricks.

A common trick is to rewrite the n=k+1 case into 2 parts:

  • one part being the n=k case (which is assumed to be true)
  • the other part can then be checked to see if it is also true

We did that in the example above, and here is another one:

Example: Adding up Odd Numbers

1 + 3 + 5 + ... + (2n−1) = n2

1. Show it is true for n=1

1 = 12 is True

2. Assume it is true for n=k

1 + 3 + 5 + ... + (2k−1) = k2 is True
(An assumption!)

Now, prove it is true for "k+1"

1 + 3 + 5 + ... + (2k−1) + (2(k+1)−1) = (k+1)2   ?

We know that 1 + 3 + 5 + ... + (2k−1) = k2 (the assumption above), so we can do a replacement for all but the last term:

k2 + (2(k+1)−1) = (k+1)2

Now expand all terms:

k2 + 2k + 2 − 1 = k2 + 2k+1

And simplify:

k2 + 2k + 1 = k2 + 2k + 1

They are the same! So it is true.

So:

1 + 3 + 5 + ... + (2(k+1)−1) = (k+1)2 is True

DONE!

So there you have it!

 

 
Search :: Index :: About :: Contact :: Contribute :: Cite This Page :: Privacy

Copyright © 2014 MathsIsFun.com

 
 

[转]Mathematical Induction --数学归纳法1的更多相关文章

  1. [中英双语] 数学缩写列表 (List of mathematical abbreviations)

    List of mathematical abbreviations From Wikipedia, the free encyclopedia 数学缩写列表 维基百科,自由的百科全书 This ar ...

  2. Lecture notes of Mathematical analysis

    Lecture notes of Mathematical analysis Preliminary theory Teaching purpose: Mathematical analysis is ...

  3. Introduction to Mathematical Thinking - Week 6 - Proofs with Quantifieers

    Mthod of proof by cases 证明完所有的条件分支,然后得出结论. 证明任意 使用任意 注意,对于一个任意的东西,你不知道它的具体信息.比如对于任意正数,你不知道它是 1 还是 2等 ...

  4. c语言求平面上2个坐标点的直线距离、求俩坐标直线距离作为半径的圆的面积、递归、菲波那次数列、explode

    #include <stdio.h> #include <math.h> #include <string.h> char explode( char * str ...

  5. 【具体数学--读书笔记】1.1 The Power of Hanoi

    这一节借助汉诺塔问题引入了"Reccurent Problems". (Reccurence, 在这里解释为“the solution to each problem depend ...

  6. Python算法:推导、递归和规约

    Python算法:推导.递归和规约 注:本节中我给定下面三个重要词汇的中文翻译分别是:Induction(推导).Recursion(递归)和Reduction(规约) 本节主要介绍算法设计的三个核心 ...

  7. 蓝眼睛与红眼睛(The blue-eyed islanders puzzle)

    澳大利亚的华裔数学神童陶哲轩曾在网上贴出来一个问题 The blue-eyed islanders puzzle 让大家思考,逗大家玩儿. 说一个岛上有100个人,其中有5个红眼睛,95个蓝眼睛.这个 ...

  8. A.Kaw矩阵代数初步学习笔记 10. Eigenvalues and Eigenvectors

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  9. MOOCULUS微积分-2: 数列与级数学习笔记 5. Another comparison test

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

随机推荐

  1. appcan.slider.js探索

    1:-moz代表firefox浏览器私有属性 -ms代表IE浏览器私有属性 -webkit代表chrome.safari私有属性 2:定义新模块:appcan.define(name,function ...

  2. sed 使用

    Sed简介 sed 是一种在线编辑器,它一次处理一行内容.处理时,把当前处理的行存储在临时缓冲区中,称为"模式空间"(pattern space),接着用sed命令处理缓冲区中的内 ...

  3. Java设计模式 工厂模式概念解析

    定义:工厂模式专门负责将大量有共同接口的类实例化.工厂模式可以动态决定将哪一个类实例化,而不必事先知道每次要实例化哪一个类. 三种形态: 简单工厂模式:又称静态工厂方法 工厂方法模式:又称多态性工厂模 ...

  4. Ganglia安装搭建

    Ganglia的安装部署 前言 1 一.Ganglia组件 1 二.安装依赖 2 三.安装expat依赖 2 四.安装confuse 3 五.安装ganglia 4 六. 服务端配置(gmetad 节 ...

  5. 【PCB】【AD使用】多图纸设计

    转ZIchenzelin2009的csdn博客:http://blog.csdn.net/chenzelin2009/article/details/5751251# 图纸结构 -平行结构 -层次结构 ...

  6. 【转】responseText,responseBody,responseXML差别

    为了做ajax的代理,研究了下服务器端的xmlhttp和客户端ajax中的xmlhttp,做了个比较 由于我一直使用JavaScript作为Asp的教本语言,所以比较起来更清楚.服务器端的xmlhtt ...

  7. Shell练习

    1   在终端下运行程序,首先清屏,然后提示:“Input a file or directory name, please!”.从键盘输入一个字符串(如:xxx),如果该字符串是目录,则显示:“xx ...

  8. Socket Receive 避免 Blocking

    我们知道 Socket Blocking 属性默认true . 表明Socket 处于同步调用 , Connect , 或 Send , Receive 需等待动作 完成才能继续执行. 有一种应用场景 ...

  9. jquery 层根据矩形路径移动和闪耀(原创)

    <!DOCTYPE html><html><head> <meta charset="UTF-8"> <title>De ...

  10. Get the current user permission level on a list item with ecmascript 分类: Sharepoint 2015-07-14 14:13 7人阅读 评论(0) 收藏

    To Check current users permissions using Ecmascript\Javascript client object model SharePoint 2010. ...