Mathematical Induction

Mathematical Induction is a special way of proving things. It has only 2 steps:

  • Step 1. Show it is true for the first one
  • Step 2. Show that if any one is true then the next one is true

Then all are true

Have you heard of the "Domino Effect"?

  • Step 1. The first domino falls
  • Step 2. When any domino falls, the next domino falls

So ... all dominos will fall!

That is how Mathematical Induction works.

In the world of numbers we say:

  • Step 1. Show it is true for n=1
  • Step 2. Show that if n=k is true then n=k+1 is also true

How to Do it

Step 1 is usually easy, we just have to prove it is true for n=1

Step 2 is best done this way:

  • Assume it is true for n=k
  • Prove it is true for n=k+1 (we can use the n=k case as a fact.)

Step 2 can often be tricky ... because we may need to use imaginative tricks to make it work!

Like in this example:

Example: 3n−1 is a multiple of 2

Is that true? Let us find out.

1. Show it is true for n=1

31−1 = 3−1 = 2

Yes 2 is a multiple of 2. That was easy.

31−1 is true

2. Assume it is true for n=k

3k−1 is true

(Hang on! How do we know that? We don't!
It is an assumption ... that we treat
as a fact for the rest of this example)

Now, prove that 3k+1−1 is a multiple of 2

3k+1 is also 3×3k

And then split into and

And each of these are multiples of 2

Because:

  • 2×3k is a multiple of 2 (we are multiplying by 2)
  • 3k−1 is true (we said that in the assumption above)

So:

3k+1−1 is true

DONE!

Did you see how we used the 3k−1 case as being true, even though we had not proved it? That is OK, because we are relying on the Domino Effect ...

... we are asking if any domino falls will the next one fall?

So we take it as a fact (temporarily) that the "n=k" domino falls (i.e. 3k−1 is true), and see if that means the "n=k+1" domino will also fall.

Tricks

I said before that we often need to use imaginative tricks.

A common trick is to rewrite the n=k+1 case into 2 parts:

  • one part being the n=k case (which is assumed to be true)
  • the other part can then be checked to see if it is also true

We did that in the example above, and here is another one:

Example: Adding up Odd Numbers

1 + 3 + 5 + ... + (2n−1) = n2

1. Show it is true for n=1

1 = 12 is True

2. Assume it is true for n=k

1 + 3 + 5 + ... + (2k−1) = k2 is True
(An assumption!)

Now, prove it is true for "k+1"

1 + 3 + 5 + ... + (2k−1) + (2(k+1)−1) = (k+1)2   ?

We know that 1 + 3 + 5 + ... + (2k−1) = k2 (the assumption above), so we can do a replacement for all but the last term:

k2 + (2(k+1)−1) = (k+1)2

Now expand all terms:

k2 + 2k + 2 − 1 = k2 + 2k+1

And simplify:

k2 + 2k + 1 = k2 + 2k + 1

They are the same! So it is true.

So:

1 + 3 + 5 + ... + (2(k+1)−1) = (k+1)2 is True

DONE!

So there you have it!

 

 
Search :: Index :: About :: Contact :: Contribute :: Cite This Page :: Privacy

Copyright © 2014 MathsIsFun.com

 
 

[转]Mathematical Induction --数学归纳法1的更多相关文章

  1. [中英双语] 数学缩写列表 (List of mathematical abbreviations)

    List of mathematical abbreviations From Wikipedia, the free encyclopedia 数学缩写列表 维基百科,自由的百科全书 This ar ...

  2. Lecture notes of Mathematical analysis

    Lecture notes of Mathematical analysis Preliminary theory Teaching purpose: Mathematical analysis is ...

  3. Introduction to Mathematical Thinking - Week 6 - Proofs with Quantifieers

    Mthod of proof by cases 证明完所有的条件分支,然后得出结论. 证明任意 使用任意 注意,对于一个任意的东西,你不知道它的具体信息.比如对于任意正数,你不知道它是 1 还是 2等 ...

  4. c语言求平面上2个坐标点的直线距离、求俩坐标直线距离作为半径的圆的面积、递归、菲波那次数列、explode

    #include <stdio.h> #include <math.h> #include <string.h> char explode( char * str ...

  5. 【具体数学--读书笔记】1.1 The Power of Hanoi

    这一节借助汉诺塔问题引入了"Reccurent Problems". (Reccurence, 在这里解释为“the solution to each problem depend ...

  6. Python算法:推导、递归和规约

    Python算法:推导.递归和规约 注:本节中我给定下面三个重要词汇的中文翻译分别是:Induction(推导).Recursion(递归)和Reduction(规约) 本节主要介绍算法设计的三个核心 ...

  7. 蓝眼睛与红眼睛(The blue-eyed islanders puzzle)

    澳大利亚的华裔数学神童陶哲轩曾在网上贴出来一个问题 The blue-eyed islanders puzzle 让大家思考,逗大家玩儿. 说一个岛上有100个人,其中有5个红眼睛,95个蓝眼睛.这个 ...

  8. A.Kaw矩阵代数初步学习笔记 10. Eigenvalues and Eigenvectors

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  9. MOOCULUS微积分-2: 数列与级数学习笔记 5. Another comparison test

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

随机推荐

  1. 关于小组所要做的APP的想法

    关于小组所要做的app,我们敲定下来是做关于在线做题的app,但是,纯粹的做题目的app我认为并没有什么大的吸引力,尤其是拿手机做题.所以,我们考虑准备在以下几个方面做功夫以增加吸引力.第一,我们的题 ...

  2. nginx、Apache、IIS服务器解决 413 Request Entity Too Large问题方法汇总

    一.nginx服务器 nginx出现这个问题的原因是请求实体太长了.一般出现种情况是Post请求时Body内容Post的数据太大了,如上传大文件过大.POST数据比较多. 处理方法 在nginx.co ...

  3. Go语言开发环境配置

    一.我为什么要学习go语言 当今已经是移动和云计算时代,Go出现在了工业向云计算转型的时刻,简单.高效.内 置并发原语和现代的标准库让Go语言尤其适合云端软件开发(毕竟它就是为此而设计的).到2014 ...

  4. centos7下安装使用docker

    1.使用 yum 从软件仓库安装 Docker:  yum install docker 2.启动 Docker 的守护进程:service docker start 3.因为下载docker hub ...

  5. linux桌面的安装

    在CentOS 7中提供了两种桌面"GNOME DESKTOP" 和 "KDE Plasa Workspaces",我们以安装"GNOME DESKT ...

  6. hadoop配置机架感知

    接着上一篇来说.上篇说了hadoop网络拓扑的构成及其相应的网络位置转换方式,本篇主要讲通过两种方式来配置机架感知.一种是通过配置一个脚本来进行映射:另一种是通过实现DNSToSwitchMappin ...

  7. 开启关闭keditor 过滤

    filterMode: false, K.create('#txt_content', { uploadJson: '/js/kindeditor-4.1.10/upload_json.ashx', ...

  8. windows8.1下javaweb环境搭建及基本配置(jdk+tomcat+eclipse)

    1.下载安装jdk在无空格的路径下,否则在linux下可能出问题.配置环境变量: a.新建系统变量——JAVA_HOME,值——D:\programming\java\jdk8 // win8下若建为 ...

  9. web学习之开发环境的搭建

    开发工具 myeclipse2014: tomcat7.0 jdk7.0 1:新建一个web projcat 2:找到web root目录下的index.jsp 这是项目首页 3:访问web项目 ht ...

  10. MySQL5.6下使用xtrabackup部分备份恢复到MySQL5.7

    现有需求:需要备份MySQL5.6环境下的部分表到MySQL5.7环境下并进行恢复 通过xtrabackup 实现部分备份有三种方式: 参考链接:http://blog.csdn.net/zhu197 ...