[luogu P1962] 斐波那契数列(带快速幂矩阵乘法模板)
题目背景
大家都知道,斐波那契数列是满足如下性质的一个数列:
• f(1) = 1
• f(2) = 1
• f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数)
题目描述
请你求出 f(n) mod 1000000007 的值。
输入输出格式
输入格式:
·第 1 行:一个整数 n
输出格式:
第 1 行: f(n) mod 1000000007 的值
输入输出样例
输入样例#1:
5
输出样例#1:
5
输入样例#2:
10
输出样例#2:
55
说明
对于 60% 的数据: n ≤ 92
对于 100% 的数据: n在long long(INT64)范围内。
嗯,用这个题来打个矩阵快速幂模板(~ ̄▽ ̄)~
code:
//By Menteur_Hxy
#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
const long long MOD=1000000007;
const int MAX=3;
const int INF=0x3f3f3f3f;
long long rd() {//一开始写的快读是int的交了三回才发现 o(╥﹏╥)o
long long x=0;
int fla=1; char c=' ';
while(c>'9'|| c<'0') {if(c=='-') fla=-fla; c=getchar();}
while(c<='9'&&c>='0') x=x*10+c-'0',c=getchar();
return x*fla;
}
struct mat{ //Matrix 矩阵
long long da[MAX][MAX];
int n,m;
mat(int x=1,int y=1) {
n=x,m=y;
memset(da,0,sizeof da);
}
void operator =(mat x) {
n=x.n,m=x.m;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
da[i][j]=x.da[i][j];
}
mat operator *(mat b) { //注意:需a.m==b.n
mat c;
c.n=n;c.m=b.m;
for(int i=1;i<=c.n;i++)
for(int j=1;j<=c.m;j++) {
c.da[i][j]=0;
for(int k=1;k<=m;k++)
c.da[i][j]+=(da[i][k]%MOD*b.da[k][j]%MOD)%MOD,c.da[i][j]%=MOD;
// 第一次把b.da[k][j] 打成da[k][j] T^T
}
return c;
}
void print() {
for(int i=1;i<=n;i++){
printf("%d",da[i][1]);
for(int j=2;j<=m;j++)
printf(" %d",da[i][j]);
printf("\n");
}
}
void mrd() {
n=rd(),m=rd();
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
da[i][j]=rd();
}
mat mul(mat b,long long d) {// a乘以b的d次方
mat c=*this;
for(;d;d>>=1) {
if(d&1) c=c*b;
b=b*b;
}
return c;
}
};
int main() {
long long num=rd();
mat a,b;
a.n=1,a.m=2;
a.da[1][1]=0,a.da[1][2]=1;
b.n=b.m=2;
b.da[1][2]=b.da[2][1]=b.da[2][2]=1;
// for(long long i=1;i<=x;i++) a=a*b;
// a.print();
// for(;num;num>>=1) {
// if(num&1) a=a*b;
// b=b*b;
// }
a=a.mul(b,num);
printf("%lld",a.da[1][1]);
return 0;
}
[luogu P1962] 斐波那契数列(带快速幂矩阵乘法模板)的更多相关文章
- Luogu P1962 斐波那契数列(矩阵乘法模板)
传送门(其实就是求斐波那契数列....) 累了 明天再解释 做这道题需要一些关于矩阵乘法的基础知识. 1. 矩阵乘法的基础运算 只有当矩阵A的列数等于矩阵B的行数时,A与B可以相乘(A的行数不一定等于 ...
- [LUOGU] P1962 斐波那契数列
求斐波那契第n项. [f(n-1) f(n)] * [0,1] = [f(n) f(n+1)] [1,1] 由此原理,根据矩阵乘法的结合律,用快速幂算出中间那个矩阵的n次方即可. 快速幂本质和普通快速 ...
- 【luogu P1962 斐波那契数列】 题解
题目链接:https://www.luogu.org/problemnew/show/P1962 给你篇dalao的blog自己看吧,把矩阵快速幂的板子一改就OK #include <algor ...
- 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...
- Luogu 1962 斐波那契数列(矩阵,递推)
Luogu 1962 斐波那契数列(矩阵,递推) Description 大家都知道,斐波那契数列是满足如下性质的一个数列: f(1) = 1 f(2) = 1 f(n) = f(n-1) + f(n ...
- 洛谷P1962 斐波那契数列【矩阵运算】
洛谷P1962 斐波那契数列[矩阵运算] 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) ( ...
- 洛谷——P1962 斐波那契数列
P1962 斐波那契数列 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 ...
- P1962 斐波那契数列 【矩阵快速幂】
一.题目 P1962 斐波那契数列 二.分析 比较基础的递推式转换为矩阵递推,这里因为$n$会超出$int$类型,所以需要用矩阵快速幂加快递推. 三.AC代码 1 #include <bits/ ...
- 洛谷—— P1962 斐波那契数列
https://www.luogu.org/problem/show?pid=1962 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f ...
随机推荐
- openstack中Nova组件Networks的全部python API 汇总
感谢朋友支持本博客.欢迎共同探讨交流.因为能力和时间有限.错误之处在所难免,欢迎指正! 假设转载,请保留作者信息. 博客地址:http://blog.csdn.net/qq_21398167 原博文地 ...
- 'hibernate.dialect' must be set when no Connection available
今天碰到的这个问题,非常无厘头.网上搜索了非常多.都不靠谱,还是靠自己 解决方法是在hibernate.cfg.xml中加入 <property name="dialect" ...
- vbs 脚本2
一些很恶作剧的vbs程序代码 作者: 字体:[增加 减小] 类型:转载 时间:2013-01-16我要评论 恶作剧的vbs代码,这里提供的都是一些死循环或导致系统死机的vbs对机器没坏处,最多关机重启 ...
- Linux命令(六)——软件包管理(安装应用程序)
与windows安装各种应用程序相似,在linux下也可以安装各种需要的应用程序,通常称为软件包.目前,在linux系统下常见的软件包格式主要有:RPM包.TAR包.bz2包.gz包.deb包.sh结 ...
- ORA-27301: OS failure message: Not enough space
OS:HP-UNIX ORA-27300: OS system dependent operation:fork failed with status: 12 ORA-27301: OS failu ...
- oc5--方法
// main.m // 第一个OC类-方法2 #import <Foundation/Foundation.h> // 1.编写类的声明 @interface Iphone : NSOb ...
- bind(),call(), apply()方法的区别是什么?
bind(),call(), apply()方法的区别是什么? 共同点:改变this指向,任何调用都不在起作用 bind() 改变this的指向,不会调用函数,返回一个新的函数 var o ={a:' ...
- A - Antipalindrome
Problem description A string is a palindrome if it reads the same from the left to the right and fro ...
- Solr.NET快速入门(五)【聚合统计,分组查询】
聚合统计 属性 说明 Min 最小值 Max 最大值 Sum 总和 Count 记录数,也就是多少行记录 Missing 结果集中,有多少条记录是空值 SumOfSquares 平方和(x1^2 + ...
- NSLayoutConstraint的使用
*一切皆代码*- -- #继承关系框架|类|类:-:|:-:|:-:UIKit|NSLayoutConstraint|--|-|- #应用场景UI界面的搭建一般会占用项目开发相当一部分的时间.涉及到控 ...