题目背景

大家都知道,斐波那契数列是满足如下性质的一个数列:

• f(1) = 1

• f(2) = 1

• f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数)

题目描述

请你求出 f(n) mod 1000000007 的值。

输入输出格式

输入格式:

·第 1 行:一个整数 n

输出格式:

第 1 行: f(n) mod 1000000007 的值

输入输出样例

输入样例#1:

5

输出样例#1:

5

输入样例#2:

10

输出样例#2:

55

说明

对于 60% 的数据: n ≤ 92

对于 100% 的数据: n在long long(INT64)范围内。

嗯,用这个题来打个矩阵快速幂模板(~ ̄▽ ̄)~

code:

//By Menteur_Hxy
#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std; const long long MOD=1000000007;
const int MAX=3;
const int INF=0x3f3f3f3f; long long rd() {//一开始写的快读是int的交了三回才发现 o(╥﹏╥)o
long long x=0;
int fla=1; char c=' ';
while(c>'9'|| c<'0') {if(c=='-') fla=-fla; c=getchar();}
while(c<='9'&&c>='0') x=x*10+c-'0',c=getchar();
return x*fla;
} struct mat{ //Matrix 矩阵
long long da[MAX][MAX];
int n,m; mat(int x=1,int y=1) {
n=x,m=y;
memset(da,0,sizeof da);
} void operator =(mat x) {
n=x.n,m=x.m;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
da[i][j]=x.da[i][j];
} mat operator *(mat b) { //注意:需a.m==b.n
mat c;
c.n=n;c.m=b.m;
for(int i=1;i<=c.n;i++)
for(int j=1;j<=c.m;j++) {
c.da[i][j]=0;
for(int k=1;k<=m;k++)
c.da[i][j]+=(da[i][k]%MOD*b.da[k][j]%MOD)%MOD,c.da[i][j]%=MOD;
// 第一次把b.da[k][j] 打成da[k][j] T^T
}
return c;
} void print() {
for(int i=1;i<=n;i++){
printf("%d",da[i][1]);
for(int j=2;j<=m;j++)
printf(" %d",da[i][j]);
printf("\n");
}
} void mrd() {
n=rd(),m=rd();
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
da[i][j]=rd();
} mat mul(mat b,long long d) {// a乘以b的d次方
mat c=*this;
for(;d;d>>=1) {
if(d&1) c=c*b;
b=b*b;
}
return c;
}
}; int main() {
long long num=rd();
mat a,b; a.n=1,a.m=2;
a.da[1][1]=0,a.da[1][2]=1;
b.n=b.m=2;
b.da[1][2]=b.da[2][1]=b.da[2][2]=1; // for(long long i=1;i<=x;i++) a=a*b;
// a.print(); // for(;num;num>>=1) {
// if(num&1) a=a*b;
// b=b*b;
// } a=a.mul(b,num); printf("%lld",a.da[1][1]);
return 0;
}

[luogu P1962] 斐波那契数列(带快速幂矩阵乘法模板)的更多相关文章

  1. Luogu P1962 斐波那契数列(矩阵乘法模板)

    传送门(其实就是求斐波那契数列....) 累了 明天再解释 做这道题需要一些关于矩阵乘法的基础知识. 1. 矩阵乘法的基础运算 只有当矩阵A的列数等于矩阵B的行数时,A与B可以相乘(A的行数不一定等于 ...

  2. [LUOGU] P1962 斐波那契数列

    求斐波那契第n项. [f(n-1) f(n)] * [0,1] = [f(n) f(n+1)] [1,1] 由此原理,根据矩阵乘法的结合律,用快速幂算出中间那个矩阵的n次方即可. 快速幂本质和普通快速 ...

  3. 【luogu P1962 斐波那契数列】 题解

    题目链接:https://www.luogu.org/problemnew/show/P1962 给你篇dalao的blog自己看吧,把矩阵快速幂的板子一改就OK #include <algor ...

  4. 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]

    P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...

  5. Luogu 1962 斐波那契数列(矩阵,递推)

    Luogu 1962 斐波那契数列(矩阵,递推) Description 大家都知道,斐波那契数列是满足如下性质的一个数列: f(1) = 1 f(2) = 1 f(n) = f(n-1) + f(n ...

  6. 洛谷P1962 斐波那契数列【矩阵运算】

    洛谷P1962 斐波那契数列[矩阵运算] 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) ( ...

  7. 洛谷——P1962 斐波那契数列

    P1962 斐波那契数列 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 ...

  8. P1962 斐波那契数列 【矩阵快速幂】

    一.题目 P1962 斐波那契数列 二.分析 比较基础的递推式转换为矩阵递推,这里因为$n$会超出$int$类型,所以需要用矩阵快速幂加快递推. 三.AC代码 1 #include <bits/ ...

  9. 洛谷—— P1962 斐波那契数列

    https://www.luogu.org/problem/show?pid=1962 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f ...

随机推荐

  1. openstack中Nova组件Networks的全部python API 汇总

    感谢朋友支持本博客.欢迎共同探讨交流.因为能力和时间有限.错误之处在所难免,欢迎指正! 假设转载,请保留作者信息. 博客地址:http://blog.csdn.net/qq_21398167 原博文地 ...

  2. &#39;hibernate.dialect&#39; must be set when no Connection available

    今天碰到的这个问题,非常无厘头.网上搜索了非常多.都不靠谱,还是靠自己 解决方法是在hibernate.cfg.xml中加入 <property name="dialect" ...

  3. vbs 脚本2

    一些很恶作剧的vbs程序代码 作者: 字体:[增加 减小] 类型:转载 时间:2013-01-16我要评论 恶作剧的vbs代码,这里提供的都是一些死循环或导致系统死机的vbs对机器没坏处,最多关机重启 ...

  4. Linux命令(六)——软件包管理(安装应用程序)

    与windows安装各种应用程序相似,在linux下也可以安装各种需要的应用程序,通常称为软件包.目前,在linux系统下常见的软件包格式主要有:RPM包.TAR包.bz2包.gz包.deb包.sh结 ...

  5. ORA-27301: OS failure message: Not enough space

    OS:HP-UNIX ORA-27300: OS system dependent operation:fork failed with status: 12  ORA-27301: OS failu ...

  6. oc5--方法

    // main.m // 第一个OC类-方法2 #import <Foundation/Foundation.h> // 1.编写类的声明 @interface Iphone : NSOb ...

  7. bind(),call(), apply()方法的区别是什么?

    bind(),call(), apply()方法的区别是什么? 共同点:改变this指向,任何调用都不在起作用 bind() 改变this的指向,不会调用函数,返回一个新的函数 var o ={a:' ...

  8. A - Antipalindrome

    Problem description A string is a palindrome if it reads the same from the left to the right and fro ...

  9. Solr.NET快速入门(五)【聚合统计,分组查询】

    聚合统计 属性 说明 Min 最小值 Max 最大值 Sum 总和 Count 记录数,也就是多少行记录 Missing 结果集中,有多少条记录是空值 SumOfSquares 平方和(x1^2 + ...

  10. NSLayoutConstraint的使用

    *一切皆代码*- -- #继承关系框架|类|类:-:|:-:|:-:UIKit|NSLayoutConstraint|--|-|- #应用场景UI界面的搭建一般会占用项目开发相当一部分的时间.涉及到控 ...