题目描述

“……在2002年6月之前购买的百事任何饮料的瓶盖上都会有一个百事球星的名字。只要凑齐所有百事球星的名字,就可参加百事世界杯之旅的抽奖活动,获得球星背包,随声听,更克赴日韩观看世界杯。还不赶快行动!”

你关上电视,心想:假设有n个不同的球星名字,每个名字出现的概率相同,平均需要买几瓶饮料才能凑齐所有的名字呢?

输入输出格式

输入格式:

整数n(2≤n≤33),表示不同球星名字的个数。

输出格式:

输出凑齐所有的名字平均需要买的饮料瓶数。如果是一个整数,则直接输出,否则应该直接按照分数格式输出,例如五又二十分之三应该输出为(复制到记事本):

3 5-- 20 第一行是分数部分的分子,第二行首先是整数部分,然后是由减号组成的分数线,第三行是分母。减号的个数应等于分母的为数。分子和分母的首位都与第一个减号对齐。

分数必须是不可约的。

输入输出样例

输入样例#1: 复制

2
输出样例#1: 复制

3
 

说一种和楼上不一样的状态(本质是一样的)

我们用$f(i)$表示一共用$n$个不同的球星,已经收集到$i$个不同的球星

考虑转移,有两种状态

1. 买到不同时转移而来,概率为
$$\frac{n-i}{n}f(i-1)$$
2. 买到相同时转移而来,概率为
$$\frac{i}{n}f(i)$$

那么总共的情况就是
$$f(i)=\frac{n-i}{n}f(i-1)+\frac{i}{n}f(i)+1$$

化简得到

$$f(i)=f(i-1)+\frac{n}{n-i}$$

这个公式实际是在计算

$$n*\sum_1^n{\frac{1}{n-i}}$$

然后暴力算就可以了

#include<cstdio>
#define int long long int
int gcd(int a,int b){return b==?a:gcd(b,a%b);}
int calc(int x)
{
int base=;
while(x) base++,x/=;
return base;
}
main()
{
int N;
scanf("%lld",&N);
int up=,down=N;
for(int i=N-;i>=;i--)
{
up=up*i+down;down=down*i;
int r=gcd(up,down);
up/=r;down/=r;
}
up=up*N;
int r=gcd(up,down);
up/=r;down/=r;
if(up%down==) {printf("%lld",up/down);return ;}
int numa=calc(up/down),numb=calc(down);
for(int i=;i<=numa;i++) printf(" ");printf("%lld",up%down);puts("");//分子
if(up/down>) printf("%lld",up/down);for(int i=;i<=numb;i++) printf("-");puts("");//注意这里要特判
for(int i=;i<=numa;i++) printf(" ");printf("%lld",down);
return ;
}
 

洛谷P1291 [SHOI2002]百事世界杯之旅(期望DP)的更多相关文章

  1. 洛谷P1291 [SHOI2002]百事世界杯之旅——期望DP

    题目:https://www.luogu.org/problemnew/show/P1291 水水的经典期望DP: 输出有毒.(其实也很简单啦) 代码如下: #include<iostream& ...

  2. 洛谷 P1291 [SHOI2002]百事世界杯之旅 解题报告

    P1291 [SHOI2002]百事世界杯之旅 题目描述 "--在2002年6月之前购买的百事任何饮料的瓶盖上都会有一个百事球星的名字.只要凑齐所有百事球星的名字,就可参加百事世界杯之旅的抽 ...

  3. 洛谷P1291 [SHOI2002]百事世界杯之旅 [数学期望]

    题目传送门 百事世界杯之旅 题目描述 “……在2002年6月之前购买的百事任何饮料的瓶盖上都会有一个百事球星的名字.只要凑齐所有百事球星的名字,就可参加百事世界杯之旅的抽奖活动,获得球星背包,随声听, ...

  4. ●洛谷P1291 [SHOI2002]百事世界杯之旅

    题链: https://www.luogu.org/recordnew/show/5861351题解: dp,期望 定义dp[i]表示还剩下i个盖子没收集时,期望还需要多少次才能手机完. 初始值:dp ...

  5. 洛谷P1291 [SHOI2002]百事世界杯之旅

    题目链接: kma 题目分析: 收集邮票的弱弱弱弱化版,因为是期望,考虑倒推 设\(f[i]\)表示现在已经买齐了\(i\)种,距离买完它的剩余期望次数 那么下一次抽有\(\frac{i}{n}\)的 ...

  6. LUOGU P1291 [SHOI2002]百事世界杯之旅 (期望dp)

    传送门 解题思路 期望$dp$.因为这个是期望步数,所以要倒着推.那么这道题就变得一脸可做了,设$f[i]$表示还有$i$张牌没有收集的期望,那么考虑再抽一张,有$(n-i)/n$的概率抽到抽过的牌, ...

  7. 洛谷 1291 [SHOI2002]百事世界杯之旅

    题目:https://www.luogu.org/problemnew/show/P1291 大水题!套路!模板! 稍微注意一下输出就行了. #include<iostream> #inc ...

  8. P1291 [SHOI2002]百事世界杯之旅(概率)

    P1291 [SHOI2002]百事世界杯之旅 设$f(n,k)$表示共n个名字,剩下k个名字未收集到,还需购买饮料的平均次数 则有: $f(n,k)=\frac{n-k}{n}*f(n,k) + \ ...

  9. luogu P1291 [SHOI2002]百事世界杯之旅

    题目链接 luogu P1291 [SHOI2002]百事世界杯之旅 题解 设\(f[k]\)表示还有\(k\)个球员没有收集到的概率 再买一瓶,买到的概率是\(k/n\),买不到的概率是\((n-k ...

随机推荐

  1. GEF中连接的实现

    在GEF绘图笔想象中复杂许多,需要很多组件的依赖与支持,稍微弄错一个引用,或一个操作调试起来就比较麻烦,下面列一下实现一个连接线功能所需要实现的类及添加的方法 建议大图查看. 相关代码:参考<G ...

  2. SqlServer动态变换库名

    declare @tname varchar(20),@num intset @tname='Players_Log_L10001'declare @sql Nvarchar(1000)=N'sele ...

  3. **PCL:嵌入VTK/QT显示(Code^_^)

    中国人真是太不知道分享了,看看这个老外的博客,启发性链接. http://www.pcl-users.org/ 1. 这个是可用的源代码: 原文:I saw a thread with links t ...

  4. 从操作系统内核看设计模式--linux内核的facade模式

    linux的内核当中处处充满了设计模式,本文先讨论一下外观模式.外观模式就是将客户和子系统解耦,为客户将复杂的子系统进行封装,从而使得客户可以使用简单易用的接口.  众所周知,linux和unix是十 ...

  5. Vue2实例中的data属性三种写法与作用

    <script src="https://unpkg.com/vue/dist/vue.js"></script> <div id="app ...

  6. 【BZOJ1367】【Baltic2004】sequence - 可合并堆

    题意: 题解: 其实这是道水题啦……只不过我没做过而已 先考虑构造不严格递增序列,考虑原序列中的一段下降区间,显然区间中的$z$全取中位数最优: 那么可以把原序列拆成很多个下降序列,从头到尾加入原序列 ...

  7. 安装ubuntu14.04之后要做的一些事

    前言: 用ubuntu14.04也有一段时间了,感觉与之前版本相比还是在挺多方面有了改进.但刚装完还是有一些小问题需要自己动手解决.鉴于网上的内容太过零碎,有些方案也太过老旧,因此在这里为大家总结一些 ...

  8. Linux系统下的 /etc/fstab 文件解读

    1 [root@localhost ~]# cat /etc/fstab 2 3 # 4 # /etc/fstab 5 # Created by anaconda on Sat Nov 3 12:03 ...

  9. ubuntu系统自动配置开机启动脚本

    以前一直搞的centos配置开机启动脚本,但是相同方法用在ubuntu系统上就不管用了,非常伤脑筋. 非常感谢  https://www.linuxidc.com/Linux/2017-09/1471 ...

  10. Python hangman小游戏

    hangman # words.py 使用pickle永久性存储数据 import pickle filename = 'words.pk' data = ['cat', 'dog', 'perro' ...