题目描述

“……在2002年6月之前购买的百事任何饮料的瓶盖上都会有一个百事球星的名字。只要凑齐所有百事球星的名字,就可参加百事世界杯之旅的抽奖活动,获得球星背包,随声听,更克赴日韩观看世界杯。还不赶快行动!”

你关上电视,心想:假设有n个不同的球星名字,每个名字出现的概率相同,平均需要买几瓶饮料才能凑齐所有的名字呢?

输入输出格式

输入格式:

整数n(2≤n≤33),表示不同球星名字的个数。

输出格式:

输出凑齐所有的名字平均需要买的饮料瓶数。如果是一个整数,则直接输出,否则应该直接按照分数格式输出,例如五又二十分之三应该输出为(复制到记事本):

3 5-- 20 第一行是分数部分的分子,第二行首先是整数部分,然后是由减号组成的分数线,第三行是分母。减号的个数应等于分母的为数。分子和分母的首位都与第一个减号对齐。

分数必须是不可约的。

输入输出样例

输入样例#1: 复制

2
输出样例#1: 复制

3
 

说一种和楼上不一样的状态(本质是一样的)

我们用$f(i)$表示一共用$n$个不同的球星,已经收集到$i$个不同的球星

考虑转移,有两种状态

1. 买到不同时转移而来,概率为
$$\frac{n-i}{n}f(i-1)$$
2. 买到相同时转移而来,概率为
$$\frac{i}{n}f(i)$$

那么总共的情况就是
$$f(i)=\frac{n-i}{n}f(i-1)+\frac{i}{n}f(i)+1$$

化简得到

$$f(i)=f(i-1)+\frac{n}{n-i}$$

这个公式实际是在计算

$$n*\sum_1^n{\frac{1}{n-i}}$$

然后暴力算就可以了

#include<cstdio>
#define int long long int
int gcd(int a,int b){return b==?a:gcd(b,a%b);}
int calc(int x)
{
int base=;
while(x) base++,x/=;
return base;
}
main()
{
int N;
scanf("%lld",&N);
int up=,down=N;
for(int i=N-;i>=;i--)
{
up=up*i+down;down=down*i;
int r=gcd(up,down);
up/=r;down/=r;
}
up=up*N;
int r=gcd(up,down);
up/=r;down/=r;
if(up%down==) {printf("%lld",up/down);return ;}
int numa=calc(up/down),numb=calc(down);
for(int i=;i<=numa;i++) printf(" ");printf("%lld",up%down);puts("");//分子
if(up/down>) printf("%lld",up/down);for(int i=;i<=numb;i++) printf("-");puts("");//注意这里要特判
for(int i=;i<=numa;i++) printf(" ");printf("%lld",down);
return ;
}
 

洛谷P1291 [SHOI2002]百事世界杯之旅(期望DP)的更多相关文章

  1. 洛谷P1291 [SHOI2002]百事世界杯之旅——期望DP

    题目:https://www.luogu.org/problemnew/show/P1291 水水的经典期望DP: 输出有毒.(其实也很简单啦) 代码如下: #include<iostream& ...

  2. 洛谷 P1291 [SHOI2002]百事世界杯之旅 解题报告

    P1291 [SHOI2002]百事世界杯之旅 题目描述 "--在2002年6月之前购买的百事任何饮料的瓶盖上都会有一个百事球星的名字.只要凑齐所有百事球星的名字,就可参加百事世界杯之旅的抽 ...

  3. 洛谷P1291 [SHOI2002]百事世界杯之旅 [数学期望]

    题目传送门 百事世界杯之旅 题目描述 “……在2002年6月之前购买的百事任何饮料的瓶盖上都会有一个百事球星的名字.只要凑齐所有百事球星的名字,就可参加百事世界杯之旅的抽奖活动,获得球星背包,随声听, ...

  4. ●洛谷P1291 [SHOI2002]百事世界杯之旅

    题链: https://www.luogu.org/recordnew/show/5861351题解: dp,期望 定义dp[i]表示还剩下i个盖子没收集时,期望还需要多少次才能手机完. 初始值:dp ...

  5. 洛谷P1291 [SHOI2002]百事世界杯之旅

    题目链接: kma 题目分析: 收集邮票的弱弱弱弱化版,因为是期望,考虑倒推 设\(f[i]\)表示现在已经买齐了\(i\)种,距离买完它的剩余期望次数 那么下一次抽有\(\frac{i}{n}\)的 ...

  6. LUOGU P1291 [SHOI2002]百事世界杯之旅 (期望dp)

    传送门 解题思路 期望$dp$.因为这个是期望步数,所以要倒着推.那么这道题就变得一脸可做了,设$f[i]$表示还有$i$张牌没有收集的期望,那么考虑再抽一张,有$(n-i)/n$的概率抽到抽过的牌, ...

  7. 洛谷 1291 [SHOI2002]百事世界杯之旅

    题目:https://www.luogu.org/problemnew/show/P1291 大水题!套路!模板! 稍微注意一下输出就行了. #include<iostream> #inc ...

  8. P1291 [SHOI2002]百事世界杯之旅(概率)

    P1291 [SHOI2002]百事世界杯之旅 设$f(n,k)$表示共n个名字,剩下k个名字未收集到,还需购买饮料的平均次数 则有: $f(n,k)=\frac{n-k}{n}*f(n,k) + \ ...

  9. luogu P1291 [SHOI2002]百事世界杯之旅

    题目链接 luogu P1291 [SHOI2002]百事世界杯之旅 题解 设\(f[k]\)表示还有\(k\)个球员没有收集到的概率 再买一瓶,买到的概率是\(k/n\),买不到的概率是\((n-k ...

随机推荐

  1. vue-cli 2.0 常用命令

    一.查询npm版本 npm -v 二.安装npm npm install npm g 三.安装webpack npm install webpack -g 四.安装vue命令行工具 npm insta ...

  2. PHP中的字符串类型

    PHP支持两种类型的字符串,这些字符串用引号说明. 1.如果希望赋值一个字面意义的字符串,精确保存这个字符串的内容,应该用单引号标注,例如: $info='You are my $sunshine'; ...

  3. 0xc000007b:vs2012+Opencv2.4.4出现"0xc000007b"问题

    在64位系统中,VS2012+opencv2.4.4下编程出现一个问题,我简单的读取图片就出现"应用程序无法正常启动0xc000007b"的问题:如图: 注意事项:把运行环境改成  ...

  4. Win10怎么批量修改文件后缀名?

    Win10怎么批量修改文件后缀名?一般我们都是右击重命名,但是,如果要改的文件很多的话,这样做事不行的,该怎么批量修改后缀名呢?下面我们一起来看看两种解决办法 通常我们修改文件后缀名都是右击>& ...

  5. <td colspan="6"></td>代表这个td占6个td的位置

    <td colspan="6"><span class="order-time">2017-10-11 14:55:23</spa ...

  6. new String(getBytes(ISO-8859-1),UTF-8)中文编码避免乱码

    byte[] b_gbk = "深".getBytes("GBK"); byte[] b_utf8 = "深".getBytes(" ...

  7. oracle 删除表空间及数据文件方法

    oracle 11g版本,创建数据库表空间,默认单个数据文件最大为32G,如果数据文件大于32G,可以增加数据文件. --删除空的表空间,但是不包含物理文件 drop tablespace table ...

  8. HDU1114 - Piggy-Bank

    Before ACM can do anything, a budget must be prepared and the necessary financial support obtained. ...

  9. 提高生产力:Web开发基础平台WebCommon的设计和实现

    Web开发中,存在着各种各样的重复性的工作.为了提高开发效率,不在当码农,我在思考和实践如何搭建一个Web开发的基础平台. Web开发基础平台的目标和功能 1.提供一套基础的开发环境,整合了常用的框架 ...

  10. CodeForcesGym 100676H Capital City

    H. Capital City Time Limit: 3000ms Memory Limit: 262144KB This problem will be judged on CodeForcesG ...