题目描述

“……在2002年6月之前购买的百事任何饮料的瓶盖上都会有一个百事球星的名字。只要凑齐所有百事球星的名字,就可参加百事世界杯之旅的抽奖活动,获得球星背包,随声听,更克赴日韩观看世界杯。还不赶快行动!”

你关上电视,心想:假设有n个不同的球星名字,每个名字出现的概率相同,平均需要买几瓶饮料才能凑齐所有的名字呢?

输入输出格式

输入格式:

整数n(2≤n≤33),表示不同球星名字的个数。

输出格式:

输出凑齐所有的名字平均需要买的饮料瓶数。如果是一个整数,则直接输出,否则应该直接按照分数格式输出,例如五又二十分之三应该输出为(复制到记事本):

3 5-- 20 第一行是分数部分的分子,第二行首先是整数部分,然后是由减号组成的分数线,第三行是分母。减号的个数应等于分母的为数。分子和分母的首位都与第一个减号对齐。

分数必须是不可约的。

输入输出样例

输入样例#1: 复制

2
输出样例#1: 复制

3
 

说一种和楼上不一样的状态(本质是一样的)

我们用$f(i)$表示一共用$n$个不同的球星,已经收集到$i$个不同的球星

考虑转移,有两种状态

1. 买到不同时转移而来,概率为
$$\frac{n-i}{n}f(i-1)$$
2. 买到相同时转移而来,概率为
$$\frac{i}{n}f(i)$$

那么总共的情况就是
$$f(i)=\frac{n-i}{n}f(i-1)+\frac{i}{n}f(i)+1$$

化简得到

$$f(i)=f(i-1)+\frac{n}{n-i}$$

这个公式实际是在计算

$$n*\sum_1^n{\frac{1}{n-i}}$$

然后暴力算就可以了

#include<cstdio>
#define int long long int
int gcd(int a,int b){return b==?a:gcd(b,a%b);}
int calc(int x)
{
int base=;
while(x) base++,x/=;
return base;
}
main()
{
int N;
scanf("%lld",&N);
int up=,down=N;
for(int i=N-;i>=;i--)
{
up=up*i+down;down=down*i;
int r=gcd(up,down);
up/=r;down/=r;
}
up=up*N;
int r=gcd(up,down);
up/=r;down/=r;
if(up%down==) {printf("%lld",up/down);return ;}
int numa=calc(up/down),numb=calc(down);
for(int i=;i<=numa;i++) printf(" ");printf("%lld",up%down);puts("");//分子
if(up/down>) printf("%lld",up/down);for(int i=;i<=numb;i++) printf("-");puts("");//注意这里要特判
for(int i=;i<=numa;i++) printf(" ");printf("%lld",down);
return ;
}
 

洛谷P1291 [SHOI2002]百事世界杯之旅(期望DP)的更多相关文章

  1. 洛谷P1291 [SHOI2002]百事世界杯之旅——期望DP

    题目:https://www.luogu.org/problemnew/show/P1291 水水的经典期望DP: 输出有毒.(其实也很简单啦) 代码如下: #include<iostream& ...

  2. 洛谷 P1291 [SHOI2002]百事世界杯之旅 解题报告

    P1291 [SHOI2002]百事世界杯之旅 题目描述 "--在2002年6月之前购买的百事任何饮料的瓶盖上都会有一个百事球星的名字.只要凑齐所有百事球星的名字,就可参加百事世界杯之旅的抽 ...

  3. 洛谷P1291 [SHOI2002]百事世界杯之旅 [数学期望]

    题目传送门 百事世界杯之旅 题目描述 “……在2002年6月之前购买的百事任何饮料的瓶盖上都会有一个百事球星的名字.只要凑齐所有百事球星的名字,就可参加百事世界杯之旅的抽奖活动,获得球星背包,随声听, ...

  4. ●洛谷P1291 [SHOI2002]百事世界杯之旅

    题链: https://www.luogu.org/recordnew/show/5861351题解: dp,期望 定义dp[i]表示还剩下i个盖子没收集时,期望还需要多少次才能手机完. 初始值:dp ...

  5. 洛谷P1291 [SHOI2002]百事世界杯之旅

    题目链接: kma 题目分析: 收集邮票的弱弱弱弱化版,因为是期望,考虑倒推 设\(f[i]\)表示现在已经买齐了\(i\)种,距离买完它的剩余期望次数 那么下一次抽有\(\frac{i}{n}\)的 ...

  6. LUOGU P1291 [SHOI2002]百事世界杯之旅 (期望dp)

    传送门 解题思路 期望$dp$.因为这个是期望步数,所以要倒着推.那么这道题就变得一脸可做了,设$f[i]$表示还有$i$张牌没有收集的期望,那么考虑再抽一张,有$(n-i)/n$的概率抽到抽过的牌, ...

  7. 洛谷 1291 [SHOI2002]百事世界杯之旅

    题目:https://www.luogu.org/problemnew/show/P1291 大水题!套路!模板! 稍微注意一下输出就行了. #include<iostream> #inc ...

  8. P1291 [SHOI2002]百事世界杯之旅(概率)

    P1291 [SHOI2002]百事世界杯之旅 设$f(n,k)$表示共n个名字,剩下k个名字未收集到,还需购买饮料的平均次数 则有: $f(n,k)=\frac{n-k}{n}*f(n,k) + \ ...

  9. luogu P1291 [SHOI2002]百事世界杯之旅

    题目链接 luogu P1291 [SHOI2002]百事世界杯之旅 题解 设\(f[k]\)表示还有\(k\)个球员没有收集到的概率 再买一瓶,买到的概率是\(k/n\),买不到的概率是\((n-k ...

随机推荐

  1. CSS读书笔记(1)---选择器和两列布局

    (1)CSS选择器优先权选择. 优先权从大到小的选择如下: 标有!important关键字声明的属性 HTML中的CSS样式属性 <div style="color:red" ...

  2. JS面向对象(2)——原型链

    原型链用于ECMAScript的继承.其思想是利用原型让一个引用类型继承另一个引用类型的属性和方法.说人话,我们知道,一个构造函数Subtype,其原型对象有一个指向构造函数的指针,这是联系构造函数和 ...

  3. Linux 内核剖解(转)

    Linux 内核剖析(转)  linux内核是一个庞大而复杂的操作系统的核心,不过尽管庞大,但是却采用子系统和分层的概念很好地进行了组织.在本文中,您将探索 Linux 内核的总体结构,并学习一些主要 ...

  4. Centos7 执行firewall-cmd –permanent –add-service=mysql报错“ModuleNotFoundError: No module named 'gi'”

    因为目前环境Python3.x与Python2.x版本并存,所以导致以上问题. 解决方法: 第一步,vim  /usr/bin/firewall-cmd, 将#!/usr/bin/python -Es ...

  5. python tips:文件读取——换行符的问题

    问题:在windows系统中,换行的符号是'\r\n'.python在读文件的时候为了系统兼容,会默认把'\r','n','\r\n'都视作换行.但是在windows文件中,可能在同一行中同时存在'\ ...

  6. 执行opatch apply 报错 OPatch failed with error code 73

    .执行opatch apply 报错 OPatch failed [oracle@ora_11g 14275605]$ /opt/oracle/product/db_1/OPatch/opatch a ...

  7. 洛谷P1297 [国家集训队]单选错位_数学期望

    考虑第 iii 位, 那么当前共有 a[i]a[i]a[i] 种选项,那么当前选项正确的情况就是下一个被误填的答案与当前答案相同.换句话说,当前答案一共有 a[i]a[i]a[i] 种可能,而下一个答 ...

  8. 前端开发—BOM对象DOM文档对象操作

    BOM 浏览器对象 BOM:Browser Object Model 操作浏览器,需要调用window对象,它是所有浏览器都支持的对象,表示的就是浏览器窗口 window对象可以通过点调用子对象 wi ...

  9. tomcat-manager 设置

    tomcat默认是没有用户登录控制的,需要登录manager,则需要配置角色与用户 1. 在conf/tomcat-users.xml中添加 <role rolename="manag ...

  10. win10卸载瑞星

    下载了一个软件,没有注意就不小心装上了瑞星这个流氓软件 百度N种办法并不能解决~ 我试过正常卸载.试过WIN自带卸载.试过重装再卸载 最后采取最傻瓜最暴力的办法 ctrl+alt+delete 打开任 ...