A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?


Above is a 7 x 3 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

Example 1:

Input: m = 3, n = 2
Output: 3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
1. Right -> Right -> Down
2. Right -> Down -> Right
3. Down -> Right -> Right

Example 2:

Input: m = 7, n = 3
Output: 28

题目大意:

从m乘n矩阵左上角走到右下角,每一步只能向右或向下,求共有多少条不同路径。

递归解决:

 class Solution {
public:
vector<vector<int>> v; int solve(int m, int n) {//从(m, n)到(1, 1)有多少条路径
if (m == || n == )
return ;
if (v[m][n] >= )
return v[m][n];
v[m][n] = solve(m - , n) + solve(m, n - );
return v[m][n];
} int uniquePaths(int m, int n) {
if (m == || n == )
return ;
if (m == || n == )
return ;
v.resize(m + , vector<int>(n + , -));
return solve(m - , n) + solve(m, n - );
}
};

迭代:

 class Solution {
public: int uniquePaths(int m, int n) {
if (m == || n == )
return ;
vector<vector<int>> v(m, vector<int>(n));
int i, j;
for (i = ; i < m; i++) {
for (j = ; j < n; j++) {
if (i == || j == )
v[i][j] = ;
else
v[i][j] = v[i - ][j] + v[i][j - ];
}
}
return v[m - ][n - ];
}
};

leetcode 62、Unique Paths的更多相关文章

  1. leetcode@ [62/63] Unique Paths II

    class Solution { public: int uniquePathsWithObstacles(vector<vector<int>>& obstacleG ...

  2. &lt;LeetCode OJ&gt; 62. / 63. Unique Paths(I / II)

    62. Unique Paths My Submissions Question Total Accepted: 75227 Total Submissions: 214539 Difficulty: ...

  3. 【leetcode】62.63 Unique Paths

    62. Unique Paths A robot is located at the top-left corner of a m x n grid (marked 'Start' in the di ...

  4. LeetCode(62)Unique Paths

    题目 A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). ...

  5. 【一天一道LeetCode】#63. Unique Paths II

    一天一道LeetCode (一)题目 Follow up for "Unique Paths": Now consider if some obstacles are added ...

  6. 【LeetCode】63. Unique Paths II 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址:https://leetcode.com/problems/unique-pa ...

  7. 【LeetCode练习题】Unique Paths II

    Unique Paths II Follow up for "Unique Paths": Now consider if some obstacles are added to ...

  8. 【LeetCode练习题】Unique Paths

    Unique Paths A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagra ...

  9. LeetCode OJ 63. Unique Paths II

    Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...

随机推荐

  1. [转] Kubernetes集群安装文档-v1.6版本

    [From] https://www.kubernetes.org.cn/1870.html http://jimmysong.io/kubernetes-handbook

  2. python3.6从含有html代码的json的中取出某个值

    python3.6从含有html代码的json的中取出某个值 之前在做接口测试的时候,网站的后端是用java写的,然后接口的response返回的都是json格式,json很简单,就是字典,类似这样子 ...

  3. ibaits数组形式批量入库

    一.xml层 <!--批量入库--> <insert id="addSecCodeList" parameterClass="java.util.Has ...

  4. 20条IPTables防火墙规则用法! [转]

    20条IPTables防火墙规则用法! 导读 管理网络流量是系统管理员必需处理的最棘手工作之一,我们必需规定连接系统的用户满足防火墙的传入和传出要求,以最大限度保证系统免受攻击.很多用户把 Linux ...

  5. mac下安装ionic

    我的mac系统是EI Capitan,如下图所示. ionic是一个跨平台的框架,能够提供高效hybrid app的开发,而且性能接近于原生态,具体请参考:http://ionicframework. ...

  6. 牛客网Java刷题知识点之equals和hashcode()

    不多说,直接上干货! 福利 => 每天都推送 欢迎大家,关注微信扫码并加入我的4个微信公众号:   大数据躺过的坑      Java从入门到架构师      人工智能躺过的坑          ...

  7. Eclipse设置JVM的内存参数

    打开Eclipse 或者 MyEclipse 打开 Windows -> Preferences -> Java -> Installed JREs 选中你所使用的 JDK,然后点击 ...

  8. <div>里用display:block有用么?

    对所有的块元素都没有意义,块元素的dispaly属性默认值为block,没必要再显式定义--除非你之前对块元素的display属性重新定义过. =========================== ...

  9. pat1011. World Cup Betting (20)

    1011. World Cup Betting (20) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue Wit ...

  10. nyoj 1197——你会加吗?——————【快速幂、分治】

    你会加吗? 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 给出两个整数A和N,计算(A + A^2 + A^3 + …… + A^(N - 1) + A^N)% 6 ...