BZOJ4001:[TJOI2015]概率论(卡特兰数,概率期望)
Description
.png)
.png)
Input
输入一个正整数N,代表有根树的结点数
Output
输出这棵树期望的叶子节点数。要求误差小于1e-9
Sample Input
Sample Output
HINT
1<=N<=10^9
Solution
好神仙一个题啊……
rqy大爷的证明真的超简单明了QwQ膜拜rqy
首先设$f_n$表示$n$个点的二叉树个数,$g_n$表示$n$个点所有$f_n$棵二叉树的叶节点总数
打个表可以发现:
$f:1 ~2~ 5~ 14 ~42$
$g:1~ 2 ~6 ~20 ~70$
可以发现$g_n=n*f_{n-1}$
怎么证明呢?
1、对于每颗$n$个点的二叉树,如果里面有$k$个叶节点,我们依次删除$k$个叶子会得到$k$个$n-1$的二叉树
2、我画了个图才发现对于每颗$n-1$个点的二叉树有$n$个位置可以悬挂一个新的叶子,所以每个$n-1$个点的二叉树被得到了$n$次
证完了
$f$的递推式可以通过枚举左子树节点个数得到:
$f_n=\sum_{i=1}^{n-1}f_{i}*f_{n-i-1}$
(rqy大爷)很容易发现这是个卡特兰数
答案为$\frac{g_n}{f_n} = \frac{n*f_{n-1}}{f_n}$
代入卡特兰数通项公式可以得到答案为$\frac{n*(n+1)}{2*(2*n-1)}$
Code
#include<cstdio>
int main()
{
double n;
scanf("%lf",&n);
printf("%.9lf",n*(n+)/(*(*n-)));
}
BZOJ4001:[TJOI2015]概率论(卡特兰数,概率期望)的更多相关文章
- BZOJ4001[TJOI2015]概率论——卡特兰数
题目描述 输入 输入一个正整数N,代表有根树的结点数 输出 输出这棵树期望的叶子节点数.要求误差小于1e-9 样例输入 1 样例输出 1.000000000 提示 1<=N<=10^9 设 ...
- [TJOI2015]概率论[卡特兰数]
题意 \(n\) 个节点二叉树的叶子节点的期望个数. \(n\leq 10^9\) . 分析 实际询问可以转化为 \(n\) 个点的不同形态的二叉树的叶子节点总数. 定义 \(f_n\) 表示 \(n ...
- luoguP3978 [TJOI2015]概率论 卡特兰数
考虑分别求出$f_n, g_n$表示$n$个点的有根二叉树的数量和$n$个点的所有情况下有根二叉树的叶子结点的总数 有$f_n = \sum_{k} f_k * f_{n - 1 - k}$,因此有$ ...
- bzoj4001: [TJOI2015]概率论
题目链接 bzoj4001: [TJOI2015]概率论 题解 生成函数+求导 设\(g(n)\)表示有\(n\)个节点的二叉树的个数,\(g(0) = 1\) 设\(f(x)\)表示\(n\)个节点 ...
- BZOJ4001 TJOI2015概率论(生成函数+卡特兰数)
设f(n)为n个节点的二叉树个数,g(n)为n个节点的二叉树的叶子数量之和.则答案为g(n)/f(n). 显然f(n)为卡特兰数.有递推式f(n)=Σf(i)f(n-i-1) (i=0~n-1). 类 ...
- [TJOI2015] 概率论 - Catalan数
一棵随机生成的 \(n\) 个结点的有根二叉树(所有互相不同构的形态等概率出现)的叶子节点数的期望.\(n \leq 10^9\) Solution \(n\) 个点的二叉树个数即 Catalan 数 ...
- 2018.12.31 bzoj4001: [TJOI2015]概率论(生成函数)
传送门 生成函数好题. 题意简述:求nnn个点的树的叶子数期望值. 思路: 考虑fnf_nfn表示nnn个节点的树的数量. 所以有递推式f0=1,fn=∑i=0n−1fifn−1−i(n>0) ...
- BZOJ4001 [TJOI2015]概率论 【生成函数】
题目链接 BZOJ4001 题解 Miskcoo 太神了,orz #include<algorithm> #include<iostream> #include<cstr ...
- 【BZOJ4001】[TJOI2015] 概率论(卡特兰数)
点此看题面 大致题意: 问你一棵\(n\)个节点的有根二叉树叶节点的期望个数. 大致思路 看到期望,比较显然可以想到设\(num_i\)为\(i\)个节点的二叉树个数,\(tot_i\)为所有\(i\ ...
随机推荐
- MsysGit下GUI乱码问题解决
在Windows下安装Git-preview-1.7.4后,使用中发现许多的乱码问题,感觉甚是不便.这是因为Git是在linux下开发的管理软件,而linux的编码方式是基于UTF-8的,所以移植到W ...
- bzoj 4573: [Zjoi2016]大森林
Description 小Y家里有一个大森林,里面有n棵树,编号从1到n.一开始这些树都只是树苗,只有一个节点,标号为1.这些树 都有一个特殊的节点,我们称之为生长节点,这些节点有生长出子节点的能力. ...
- java开发中的设计模式
http://www.cnblogs.com/maowang1991/archive/2013/04/15/3023236.html 一.设计模式的分类 总体来说设计模式分为三大类: 创建型模式,共五 ...
- .net mvc 设置div的动态部分视图内容 dynamic partial view
示例效果:点击按钮,在div中 显示不同的partial view的内容 $("#btnEdit").click(function () { //动态获取相应的部分视图 var u ...
- 8、列表:ion-list
1.基本样式 no-lines 属性 隐藏列表项之间的分割符 inset 属性 去掉 ion-list的 外边框. 默认 的 ion-list 是有外边框的. /* ---示例代码----*/ & ...
- JavaScript对象 继承
JavaScript继承主要依靠原型链实现. 原型链 利用原型让一个引用类型继承另一个引用类型水位属性和方法. 每一个构造函数都有一个原型对象,原型对象都包含一个指向构造函数的指针,而实例都包含一个指 ...
- flask-session总结
一.session session和cookie的原理和区别: cookie是保存在浏览器上的键值对 session是存在服务端的键值对(服务端的session就是 ...
- 有关table布局时tr 属性display:block显示布局错乱
display:block display:block是可以把非块级元素强制转换为块级元素显示,如内嵌元素span,原来不支持设置宽高,宽度是由内容撑开的; display:table-row tab ...
- Ubuntu真机安装
Ubuntu真机安装 1.Ubuntu安装: (1)启动盘制作: a.下载启动盘制作工具Universal USB Installe,下载地址: b.下载Ubuntu系统镜像,到本地磁盘,官方下载地址 ...
- 详解JavaScript UTC时间转换方法
这篇文章主要介绍了JavaScript UTC时间转换方法,介绍了本地时间到UTC时间的转换.UTC日期到本地日期的转换,感兴趣的小伙伴们可以参考一下 一.前言 1.UTC: Universal Ti ...