P3539 [POI2012]ROZ-Fibonacci Representation
题目描述
The Fibonacci sequence is a sequence of integers, called Fibonacci numbers, defined as follows:
Fib0=0,Fib1=1,Fibn=Fibn−2+Fibn−1 for n>1Fib_{0}=0,Fib_{1}=1,Fib_{n}=Fib_{n-2}+Fib_{n-1}\ for\ n>1Fib0=0,Fib1=1,Fibn=Fibn−2+Fibn−1 for n>1
Its initial elements are: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...
Byteasar investigates representations of numbers as sums or differences of Fibonacci numbers. Currently he is wondering what is the minimum representation, i.e., one with the minimum number of (not necessarily different) Fibonacci numbers, for a given positive integer kkk . For example, the numbers 10, 19, 17, and 1070 can be minimally represented using, respectively, 2, 2, 3, and 4 Fibonacci numbers as follows:
10=5+510=5+510=5+5
19=21−219=21-219=21−2
17=13+5−117=13+5-117=13+5−1
1070=987+89−5−11070=987+89-5-11070=987+89−5−1
Help Byteasar! Write a program that, for a given positive integer kkk determines the minimum number of Fibonacci numbers required to represent kkk as their sum or difference.
给一个数,问最少可以用几个斐波那契数加加减减凑出来
例如 10=5+5 19=21-2
17=13+5-1
1070=987+89-5-1
输入输出格式
输入格式:
In the first line of the standard input a single positive integer ppp is given (1≤p≤101\le p\le 101≤p≤10 ) that denotes the number of queries. The following ppp lines hold a single positive integer kkk each (1≤k≤1×10171\le k\le 1\times 10^{17}1≤k≤1×1017 ).
多组数据
输出格式:
For each query your program should print on the standard
output the minimum number of Fibonacci numbers needed to represent the
number kkk as their sum or difference.
输入输出样例
1
1070
4
说明
给一个数,问最少可以用几个斐波那契数加加减减凑出来
Solution:
贪心水题,刷了那么多道斐波拉契,看到本题感觉简直水到爆了(红题难度)。
首先由于斐波拉契数的前两项是$1,1$,所以易得对于任何整数必能写成多个斐波拉契数加减的形式。
对于一个数$x$,我们贪心找到与$x$差值最小的斐波拉契数,将新的$x$赋为差值,每次进行这个操作,统计次数,直到$x$为$0$为止,输出次数。
证明上述过程也很简单:由于我们知道任何整数必能写成多个斐波拉契数加减的形式,所以我们显然使$x$每次变得越小越好(即减的越多越好),因为每个斐波拉契数都等于前面两项的和,所以我们完全没必要将一步操作改为两步操作。
举个例子:当$n=8$,答案是$1$(即$8=8$,$8$为第6项),而我们不需要将前面的$3,5$什么的记录进去,因为这样会多$1$步操作。当$n=11$,答案是$2$(即$11=8+3$或$11=13-2$),显然不用将$8$拆为更小的斐波拉契数之和,也不用将$13$拆为更小的斐波拉契数之和,这样必然会徒增次数。
那么具体实现时,直接预处理斐波拉契数,然后对于每次询问,二分出第一个大于等于该值的位置$p$,然后第一个小于该值的值位置$p-1$,则$x=min(f[p]-x,x-f[p-1])$。
代码:
#include<bits/stdc++.h>
#define il inline
#define ll long long
using namespace std;
ll f[],n,t;
il void getans(ll x){
ll p=lower_bound(f+,f+,x)-f,q=p-,tot=;
while(x){
x=min(f[p]-x,x-f[q]);
p=lower_bound(f+,f+,x)-f;
q=p-;
tot++;
}
cout<<tot<<endl;
}
int main()
{
ios::sync_with_stdio();
cin>>n;
f[]=f[]=;
for(int i=;i<=;i++)f[i]=f[i-]+f[i-];
while(n--){
cin>>t;
getans(t);
}
}
P3539 [POI2012]ROZ-Fibonacci Representation的更多相关文章
- 洛谷 P3539 [POI2012]ROZ-Fibonacci Representation 解题报告
P3539 [POI2012]ROZ-Fibonacci Representation 题意:给一个数,问最少可以用几个斐波那契数加加减减凑出来 多组数据10 数据范围1e17 第一次瞬间yy出做法, ...
- BZOJ2796[Poi2012]Fibonacci Representation——贪心+二分查找
题目描述 给出一个正整数x,问x最少能由多少个Fibonacci数加减算出. 例如1070=987+89-5-1,因此x=1070时答案是4. 输入 第一行一个正整数q (q<=10),表示有q ...
- 【bzoj2796】 [Poi2012]Fibonacci Representation
给出一个数字,用FIB数列各项加加减减来得到. 问最少要多少个(可以重复使用) 大概试了一下,fibonacci数列的增长是很快的,大概到了90+项就超过了题目范围…… 所以每次找一个最近的fibon ...
- [BZOJ2796][Poi2012]Fibonacci Representation
由于是斐波那契数列,所以$x_i+x_j<=x_k,i<j<k$ 所以猜测可以贪心选择两边近的数处理. #include<cstdio> #include<algo ...
- 洛谷P3539 [POI2012] ROZ-Fibonacci Representation
题目传送门 转载自:five20,转载请注明出处 本来看到这题,蒟蒻是真心没有把握的,还是five20大佬巨orz 首先由于斐波拉契数的前两项是1,1 ,所以易得对于任何整数必能写成多个斐波拉契数加减 ...
- BZOJ [Poi2012]Fibonacci Representation
找最近的数 记忆化 (我也不知道为什么对的) #include<cstdio> #include<algorithm> #include<map> using na ...
- LUOGU P3539 [POI2012]ROZ-Fibonacci Representation
传送门 解题思路 打了个表发现每次x只会被比x大的第一个fab或比x小的第一个fab表示,就直接写了个爆搜骗分,结果过了.. 代码 #include<iostream> #include& ...
- bzoj 2796: [Poi2012]Fibonacci Representation
结论貌似是,,,肯定只有没有重复的数字.http://hzwer.com/6426.html 一开始猜的是贪心,感觉也是可以的啊...(想想都有道理,然而看到是神奇的(dp类)记忆化搜索,直接虚的不敢 ...
- POI2012题解
POI2012题解 这次的完整的\(17\)道题哟. [BZOJ2788][Poi2012]Festival 很显然可以差分约束建图.这里问的是变量最多有多少种不同的取值. 我们知道,在同一个强连通分 ...
随机推荐
- 关于SSM项目注解事务不回滚的问题
<!--扫描service包(包含子包)下所有使用注解的类型--> <context:component-scan base-package="com.song.ssm.s ...
- I/O流、序列化
1)流序列化对象ObjectOutputStream调用writerObject写出序列化对象,ObjectInputStream调用readObject读取序列化对象,序列化的对象必须要实现Seri ...
- wamp环境下安装imagick扩展
先上图,如下是安装成功后的phpinfo()界面: 安装步骤: 1.先确定安装版本,比如我的的php : php7.0.12 x86 ts 那么就需要三方版本 要一致:imagick软件本身( 如x ...
- C语言程序设计·谭浩强(第四版)第二章课后习题的答案,算法——程序的灵魂
C语言程序小练习 1.用C语言设计程序算出1-1/2+1/3-14+1/5...+1/99-1/100的值 #include<stdio.h> int main() { ; double ...
- Linux 控制台
shell shell命令分为两种:分别是内部命令和外部命令. 内部命令:在安装的时候嵌入系统内核. 外部命令:以文件的形式存在. 可以使用type命令查看是内部命令还是外部命令. Linux中,默认 ...
- 分支push不上去的问题
还原一下现场,我在自己的项目里面,从master里面checkout的一个分支,当我在我这个分支里面进行 push代码的操作,我突然发现我的代码不能执行push的操作,如图 这个原因是由于远端的仓库没 ...
- ORA-12705: Cannot access NLS data files or invalid
RedHat7.1 Oracle11gr2 oracle 默认的编码方式如下:SQL> select userenv('language') from dual; USERENV('LANGUA ...
- WPF中的ControlTemplate(控件模板)
原文:WPF中的ControlTemplate(控件模板) WPF中的ControlTemplate(控件模板) ...
- sqoop 的使用 -20160410
1 导入导出数据库 1)列出mysql数据库中的所有数据库命令 # sqoop list-databases --connect jdbc:mysql://localhost:3306/ - ...
- C语言RL78 serial bootloader和C#语言bootloader PC端串口通信程序
了解更多关于bootloader 的C语言实现,请加我QQ: 1273623966 (验证信息请填 bootloader),欢迎咨询或定制bootloader(在线升级程序). 前段时间完成的hype ...