题目描述

The Fibonacci sequence is a sequence of integers, called Fibonacci numbers, defined as follows:

Fib0=0,Fib1=1,Fibn=Fibn−2+Fibn−1 for n>1Fib_{0}=0,Fib_{1}=1,Fib_{n}=Fib_{n-2}+Fib_{n-1}\ for\ n>1Fib0​=0,Fib1​=1,Fibn​=Fibn−2​+Fibn−1​ for n>1

Its initial elements are: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

Byteasar investigates representations of numbers as sums or differences of Fibonacci numbers. Currently he is wondering what is the minimum representation, i.e., one with the minimum number of (not necessarily different) Fibonacci numbers, for a given positive integer kkk . For example, the numbers 10, 19, 17, and 1070 can be minimally represented using, respectively, 2, 2, 3, and 4 Fibonacci numbers as follows:

10=5+510=5+510=5+5

19=21−219=21-219=21−2

17=13+5−117=13+5-117=13+5−1

1070=987+89−5−11070=987+89-5-11070=987+89−5−1

Help Byteasar! Write a program that, for a given positive integer kkk determines the minimum number of Fibonacci numbers required to represent kkk as their sum or difference.

给一个数,问最少可以用几个斐波那契数加加减减凑出来

例如 10=5+5 19=21-2

17=13+5-1

1070=987+89-5-1

输入输出格式

输入格式:

In the first line of the standard input a single positive integer ppp is given (1≤p≤101\le p\le 101≤p≤10 ) that denotes the number of queries. The following ppp lines hold a single positive integer kkk each (1≤k≤1×10171\le k\le 1\times 10^{17}1≤k≤1×1017 ).

多组数据

输出格式:

For each query your program should print on the standard
output the minimum number of Fibonacci numbers needed to represent the
number kkk as their sum or difference.

输入输出样例

输入样例#1:

1
1070
输出样例#1:

4

说明

给一个数,问最少可以用几个斐波那契数加加减减凑出来

Solution:

  贪心水题,刷了那么多道斐波拉契,看到本题感觉简直水到爆了(红题难度)。

  首先由于斐波拉契数的前两项是$1,1$,所以易得对于任何整数必能写成多个斐波拉契数加减的形式。

  对于一个数$x$,我们贪心找到与$x$差值最小的斐波拉契数,将新的$x$赋为差值,每次进行这个操作,统计次数,直到$x$为$0$为止,输出次数。

  证明上述过程也很简单:由于我们知道任何整数必能写成多个斐波拉契数加减的形式,所以我们显然使$x$每次变得越小越好(即减的越多越好),因为每个斐波拉契数都等于前面两项的和,所以我们完全没必要将一步操作改为两步操作。

  举个例子:当$n=8$,答案是$1$(即$8=8$,$8$为第6项),而我们不需要将前面的$3,5$什么的记录进去,因为这样会多$1$步操作。当$n=11$,答案是$2$(即$11=8+3$或$11=13-2$),显然不用将$8$拆为更小的斐波拉契数之和,也不用将$13$拆为更小的斐波拉契数之和,这样必然会徒增次数。

  那么具体实现时,直接预处理斐波拉契数,然后对于每次询问,二分出第一个大于等于该值的位置$p$,然后第一个小于该值的值位置$p-1$,则$x=min(f[p]-x,x-f[p-1])$。

代码:

#include<bits/stdc++.h>
#define il inline
#define ll long long
using namespace std;
ll f[],n,t;
il void getans(ll x){
ll p=lower_bound(f+,f+,x)-f,q=p-,tot=;
while(x){
x=min(f[p]-x,x-f[q]);
p=lower_bound(f+,f+,x)-f;
q=p-;
tot++;
}
cout<<tot<<endl;
}
int main()
{
ios::sync_with_stdio();
cin>>n;
f[]=f[]=;
for(int i=;i<=;i++)f[i]=f[i-]+f[i-];
while(n--){
cin>>t;
getans(t);
}
}

P3539 [POI2012]ROZ-Fibonacci Representation的更多相关文章

  1. 洛谷 P3539 [POI2012]ROZ-Fibonacci Representation 解题报告

    P3539 [POI2012]ROZ-Fibonacci Representation 题意:给一个数,问最少可以用几个斐波那契数加加减减凑出来 多组数据10 数据范围1e17 第一次瞬间yy出做法, ...

  2. BZOJ2796[Poi2012]Fibonacci Representation——贪心+二分查找

    题目描述 给出一个正整数x,问x最少能由多少个Fibonacci数加减算出. 例如1070=987+89-5-1,因此x=1070时答案是4. 输入 第一行一个正整数q (q<=10),表示有q ...

  3. 【bzoj2796】 [Poi2012]Fibonacci Representation

    给出一个数字,用FIB数列各项加加减减来得到. 问最少要多少个(可以重复使用) 大概试了一下,fibonacci数列的增长是很快的,大概到了90+项就超过了题目范围…… 所以每次找一个最近的fibon ...

  4. [BZOJ2796][Poi2012]Fibonacci Representation

    由于是斐波那契数列,所以$x_i+x_j<=x_k,i<j<k$ 所以猜测可以贪心选择两边近的数处理. #include<cstdio> #include<algo ...

  5. 洛谷P3539 [POI2012] ROZ-Fibonacci Representation

    题目传送门 转载自:five20,转载请注明出处 本来看到这题,蒟蒻是真心没有把握的,还是five20大佬巨orz 首先由于斐波拉契数的前两项是1,1 ,所以易得对于任何整数必能写成多个斐波拉契数加减 ...

  6. BZOJ [Poi2012]Fibonacci Representation

    找最近的数 记忆化 (我也不知道为什么对的) #include<cstdio> #include<algorithm> #include<map> using na ...

  7. LUOGU P3539 [POI2012]ROZ-Fibonacci Representation

    传送门 解题思路 打了个表发现每次x只会被比x大的第一个fab或比x小的第一个fab表示,就直接写了个爆搜骗分,结果过了.. 代码 #include<iostream> #include& ...

  8. bzoj 2796: [Poi2012]Fibonacci Representation

    结论貌似是,,,肯定只有没有重复的数字.http://hzwer.com/6426.html 一开始猜的是贪心,感觉也是可以的啊...(想想都有道理,然而看到是神奇的(dp类)记忆化搜索,直接虚的不敢 ...

  9. POI2012题解

    POI2012题解 这次的完整的\(17\)道题哟. [BZOJ2788][Poi2012]Festival 很显然可以差分约束建图.这里问的是变量最多有多少种不同的取值. 我们知道,在同一个强连通分 ...

随机推荐

  1. ajax在同一页面中同控制器不同方法中调用数据并异步刷新的实例

    我在实习以来都有做一些笔记,之前做的笔记都在简书里,现在我提前把公司给我的任务做好了,坐在电脑前又不好玩别的,那么我就整理下我之前的笔记吧!(此项目是thinkphp5开发的) 先上效果图 这是整体页 ...

  2. MySQL Waiting for table metadata lock的解决方法

    最近需要在某一个表中新增字段,使用Sequel Pro 或者Navicat工具都会出现程序没有反应,使用 show processlist 查看,满屏都是 Waiting for table meta ...

  3. ubuntu系統如何啟動root用戶登陸?

    之前分享過關於這個問題的文章,現在自己在分享一個關於這個問題的文章給大家.為了學習Linux,一氣之下把win10的換成了ubuntu的系統.安裝就不給大家介紹了(網上很多教程). 在我們安裝好之後, ...

  4. Git----使用WebHook实现代码自动部署

    起因: 经常本地push到gitee等线上代码仓库,然后登陆服务器在进行pull,很麻烦,想偷懒怎么办?使用git的webhook实现! 1.实现原理 1.1本地提交推送 1.2线上仓库监听push动 ...

  5. PHP Laravel 5.4 环境搭建

    1.php运行环境搭建 在win10系统上进行搭建的,使用的是wamp环境  wampserver3_x86_apache2.4.17_mysql5.7.9_php5.6.15.exe,安装包中集成了 ...

  6. JNI模板

    java为了调用底层驱动函数,需要调用外部的C/C++代码,java提供了JNI接口: 然后将C代码编译成库(windows下 .dll / android环境下 .so) arm-linux-gcc ...

  7. python mac下安装虚拟环境

    Mac 下 Flask 框架 workon命令找不到 ---- 最终解决方案(详解具体实现操作过程中遇到的坑) Mac 下 Flask 的 全网最详细搭建 1.安装virtualenv和virtual ...

  8. python三大神器之迭代器

    可迭代协议: 内部含有__iter__方法的值/变量都是可迭代的.可迭代类型和python语言之间的协议. 可迭代对象: iterable,内部包含__iter__()函数. 迭代器: iterato ...

  9. 2018年第九届蓝桥杯【C++省赛B组】【第二题:明码】

    参考:https://blog.csdn.net/qq_34202873/article/details/79784242 #include <bits/stdc++.h> using n ...

  10. MongoDB从环境搭建到代码编程(Window 环境)

    本人开发环境: window Server 2008 , 64位系统 服务端 MongoDB下载地址:http://www.mongodb.org/downloads  (本人己下好的在百度网盘 : ...