Toy Storage
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 6534   Accepted: 3905

Description

Mom and dad have a problem: their child, Reza, never puts his toys away when he is finished playing with them. They gave Reza a rectangular box to put his toys in. Unfortunately, Reza is rebellious and obeys his parents by simply throwing his toys into the box. All the toys get mixed up, and it is impossible for Reza to find his favorite toys anymore. 
Reza's parents came up with the following idea. They put cardboard partitions into the box. Even if Reza keeps throwing his toys into the box, at least toys that get thrown into different partitions stay separate. The box looks like this from the top: 

We want for each positive integer t, such that there exists a partition with t toys, determine how many partitions have t, toys.

Input

The input consists of a number of cases. The first line consists of six integers n, m, x1, y1, x2, y2. The number of cardboards to form the partitions is n (0 < n <= 1000) and the number of toys is given in m (0 < m <= 1000). The coordinates of the upper-left corner and the lower-right corner of the box are (x1, y1) and (x2, y2), respectively. The following n lines each consists of two integers Ui Li, indicating that the ends of the ith cardboard is at the coordinates (Ui, y1) and (Li, y2). You may assume that the cardboards do not intersect with each other. The next m lines each consists of two integers Xi Yi specifying where the ith toy has landed in the box. You may assume that no toy will land on a cardboard.

A line consisting of a single 0 terminates the input.

Output

For each box, first provide a header stating "Box" on a line of its own. After that, there will be one line of output per count (t > 0) of toys in a partition. The value t will be followed by a colon and a space, followed the number of partitions containing t toys. Output will be sorted in ascending order of t for each box.

Sample Input

4 10 0 10 100 0
20 20
80 80
60 60
40 40
5 10
15 10
95 10
25 10
65 10
75 10
35 10
45 10
55 10
85 10
5 6 0 10 60 0
4 3
15 30
3 1
6 8
10 10
2 1
2 8
1 5
5 5
40 10
7 9
0

Sample Output

Box
2: 5
Box
1: 4
2: 1

Source

 
  • 题意:给定n条无顺序的边,将一个矩形划分成n+1个区域,再给定m个点,求每个区域各有多少个点,输出将按区域内存在的点的数目进行升序排序。 
    POJ2318类似,但是这里的点需要排序,还有输出结果不同
  • code:
     #include<iostream>
    #include<cstring>
    #include<string>
    #include<algorithm>
    #include<cstdio>
    #include<cstdlib>
    #include<cmath>
    using namespace std;
    const int MAX = ;
    typedef struct point {
    int x;
    int y;
    }point;
    typedef struct value {
    point start;
    point end;
    }v;
    v edge[MAX];
    int sum[MAX], ans[MAX];
    int n, m, x1, y11, x2, y2, flag = ,Ui, Li;
    point tp;
    int Xj, Yj;
    bool com(const v t1, const v t2) {
    return t1.start.x < t2.start.x;
    }
    bool com2(const int a, const int b) {
    return a < b;
    }
    int multi(point p1, point p2, point p0) { //判断p1p0和p2p0的关系,<0,p1p0在p2p0的逆时针方向
    return (p1.x - p0.x)*(p2.y - p0.y) - (p2.x - p0.x)*(p1.y - p0.y);
    }
    void inset(point p) {
    int low = , high = n;
    while (low <= high) {
    int mid = (high + low) / ;
    if (multi(p, edge[mid].start, edge[mid].end) < ) /*点p1在边的左侧*/
    high = mid - ;
    else //点p在边的右侧
    low = mid + ;
    }
    if (multi(p, edge[low-].start, edge[low-].end) < )
    sum[low-]++;
    else
    sum[low]++;
    }
    int main() {
    while (cin>>n && n) {
    memset(sum, , sizeof(sum));
    memset(ans, , sizeof(ans));
    cin >> m >> x1 >> y11 >> x2 >> y2;
    for (int i = ; i < n; i++) {
    cin >> Ui >> Li;
    edge[i].start.x = Ui;
    edge[i].start.y = y11;
    edge[i].end.x = Li;
    edge[i].end.y = y2;
    }
    edge[n].start.x = x2;
    edge[n].start.y = y11;
    edge[n].end.x = x2;
    edge[n].end.y = y2;
    sort(edge, edge + n + , com);
    for (int j = ; j < m; j++) {
    cin >> Xj >> Yj;
    tp.x = Xj;
    tp.y = Yj;
    inset(tp);
    }
    for (int i = ; i <= n; i++)
    {
    if (sum[i] != )
    ans[sum[i]]++;
    }
    cout << "Box" << endl;
    for (int i = ; i <= n; i++)
    {
    if (ans[i] != )
    cout << i << ": " << ans[i] << endl;
    }
    }
    return ;
    }
  • 再熟悉一下叉积函数
     再熟悉一下叉积函数
    int multi(point p1, point p2, point p0) {
    return (p1.x - p0.x)*(p2.y - p0.y) - (p2.x - p0.x)*(p1.y - p0.y);
    }
    //判断p1p0和p2p0的关系
    //结果<0, p1p0在p2p0的逆时针方向,即点p1在p2p0的左侧
    //结果>0, p1p0在p2p0的顺时针方向,即点p1在p2p0的右侧

POJ 2398--Toy Storage(叉积判断,二分找点,点排序)的更多相关文章

  1. poj 2318 TOYS &amp; poj 2398 Toy Storage (叉积)

    链接:poj 2318 题意:有一个矩形盒子,盒子里有一些木块线段.而且这些线段坐标是依照顺序给出的. 有n条线段,把盒子分层了n+1个区域,然后有m个玩具.这m个玩具的坐标是已知的,问最后每一个区域 ...

  2. poj 2398 Toy Storage(计算几何)

    题目传送门:poj 2398 Toy Storage 题目大意:一个长方形的箱子,里面有一些隔板,每一个隔板都可以纵切这个箱子.隔板将这个箱子分成了一些隔间.向其中扔一些玩具,每个玩具有一个坐标,求有 ...

  3. POJ 2318 TOYS && POJ 2398 Toy Storage(几何)

    2318 TOYS 2398 Toy Storage 题意 : 给你n块板的坐标,m个玩具的具体坐标,2318中板是有序的,而2398无序需要自己排序,2318要求输出的是每个区间内的玩具数,而231 ...

  4. POJ 2398 Toy Storage (叉积判断点和线段的关系)

    题目链接 Toy Storage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4104   Accepted: 2433 ...

  5. POJ 2398 Toy Storage(计算几何,叉积判断点和线段的关系)

    Toy Storage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3146   Accepted: 1798 Descr ...

  6. POJ 2398 Toy Storage(叉积+二分)

    Description Mom and dad have a problem: their child, Reza, never puts his toys away when he is finis ...

  7. poj 2398 Toy Storage【二分+叉积】

    二分点所在区域,叉积判断左右 #include<iostream> #include<cstdio> #include<cstring> #include<a ...

  8. 向量的叉积 POJ 2318 TOYS & POJ 2398 Toy Storage

    POJ 2318: 题目大意:给定一个盒子的左上角和右下角坐标,然后给n条线,可以将盒子分成n+1个部分,再给m个点,问每个区域内有多少各点 这个题用到关键的一步就是向量的叉积,假设一个点m在 由ab ...

  9. 2018.07.04 POJ 2398 Toy Storage(二分+简单计算几何)

    Toy Storage Time Limit: 1000MS Memory Limit: 65536K Description Mom and dad have a problem: their ch ...

  10. POJ 2398 - Toy Storage 点与直线位置关系

    Toy Storage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5439   Accepted: 3234 Descr ...

随机推荐

  1. openLayers3 中实现多个Overlay

    此篇的目的是为了记录下用Overlay的一些操作. 其实实现多个就是创建多个div,然后给每个div绑定Overlay. //页面加载完函数 --显示个关键点的名称 window.onload = f ...

  2. Java内部类详解 2

    Java内部类详解 说起内部类这个词,想必很多人都不陌生,但是又会觉得不熟悉.原因是平时编写代码时可能用到的场景不多,用得最多的是在有事件监听的情况下,并且即使用到也很少去总结内部类的用法.今天我们就 ...

  3. Topcoder SRM 563 Div1 500 SpellCards

    题意 [题目链接]这怎么发链接啊..... 有\(n\)张符卡排成一个队列,每张符卡有两个属性,等级\(li\)和伤害\(di\). 你可以做任意次操作,每次操作为以下二者之一: 把队首的符卡移动到队 ...

  4. HTML表单特别效果—音量调节,购物数量

    <form oninput="x.value=parseInt(a.value)+parseInt(b.value)">0<input type="ra ...

  5. CompletionService的异常处理

    一.采用take()方法时发生异常 示例代码: 情况一:异常比另一个正确任务,较晚出现,正确任务的结果会打印出 import java.util.concurrent.Callable; import ...

  6. CompletionService的poll方法

    1.poll():马上返回完成的任务,若没有,则返回null 2.poll(long timeout, TimeUnit unit): 等待timeout时间,如果大于最短任务完成时间,则获取任务结果 ...

  7. constructor()方法

    在做微信小程序的时候,需要对传输的数据进行加密,大牛给我介绍constructor()方法,不是很懂这个但是用了一次,今天来用自己的想法来理解这个方法 ———————————————————————— ...

  8. js:JSON对象与JSON字符串转换

    JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,采用完全独立于语言的文本格式,是理想的数据交换格式. 同时,JSON是 JavaScript 原生格式,这 ...

  9. 利用Surfingkeys和tampermonkey效率操作网页

    tampermonkey可以实现网页载入后自动进行某些操作,适合有规律的操作,实现完全自动化. 而Surfingkeys可以实现用各种按键实现各种功能,功能全部用JavaScript写,自定义性更强.

  10. startup ORA-00845: MEMORY_TARGET not supported on this system

    一台虚拟机跑多个实例时,由于/dev/shm空间不够导致如下报错> startupORA-00845: MEMORY_TARGET not supported on this system解决方 ...