深入浅出Cocoa多线程编程之 block 与 dispatch quene
深入浅出 Cocoa 多线程编程之 block 与 dispatch quene
罗朝辉(http://www.cppblog.com/kesalin
CC 许可,转载请注明出处
block 是 Apple 在 GCC 4.2 中扩充的新语法特性,其目的是支持多核并行编程。我们可以将 dispatch_queue 与 block 结合起来使用,方便进行多线程编程。
本文源代码下载:点击下载
1,实验工程准备
在 XCode 4.0 中,我们建立一个 Mac OS X Application 类型的 Command Line Tool,在 Type 里面我们选择 Foundation 就好,工程名字暂且为 StudyBlocks.默认生成的工程代码 main.m 内容如下:
int main (int argc, const char * argv[])
{
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
// insert code here
NSLog(@"Hello, World!");
[pool drain];
return 0;
}
2,如何编写 block
在自动生成的工程代码中,默认打印一条语句”Hello, World!”,这个任务可以不可以用 block 语法来实现呢?答案是肯定的,请看:
void (^aBlock)(void) = ^(void){ NSLog(@”Hello, World!”); };
aBlock();
用上面的这两行语句替换 main.m 中的 NSLog(@”Hello, World!”); 语句,编译运行,结果是一样的。
这两行语句是什么意思呢?首先,等号左边的 void (^aBlock)(void) 表示声明了一个 block,这个 block 不带参数(void)且也无返回参数(void);等号右边的 ^(void){ } 结构表示一个 block 的实现体,至于这个 block 具体要做的事情就都在 {} 之间了。在这里我们仅仅是打印一条语句。整个语句就是声明一个 block,并对其赋值。第二个语句就是调用这个 block 做实际的事情,就像我们调用函数一样。block 很有点像 C++0X 中的 Lambda 表达式。
我们也可以这么写:
void (^aBlock)(void) = 0;
aBlock = ^(void) {
NSLog(@”Hello, World!”);
};
aBlock();
现在我们知道了一个 block 该如何编写了,那么 block 数组呢?也很简单,请看:
void (^blocks[2])(void) = {
^(void){ NSLog(@” >> This is block 1!”); },
^(void){ NSLog(@” >> This is block 2!”); }
};
blocks[0]();
blocks[1]();
谨记!
block 是分配在 stack 上的,这意味着我们必须小心里处理 block 的生命周期。
比如如下的做法是不对的,因为 stack 分配的 block 在 if 或 else 内是有效的,但是到大括号 } 退出时就可能无效了:
dispatch_block_t block;
if (x) {
block = ^{ printf(“true\n”); };
} else {
block = ^{ printf(“false\n”); };
}
block();
上面的代码就相当于下面这样的 unsafe 代码:
if (x) {
struct Block __tmp_1 = ; // setup details
block = &__tmp_1;
} else {
struct Block __tmp_2 = ; // setup details
block = &__tmp_2;
}
3,如何在 block 中修改外部变量
考虑到 block 的目的是为了支持并行编程,对于普通的 local 变量,我们就不能在 block 里面随意修改(原因很简单,block 可以被多个线程并行运行,会有问题的),而且如果你在 block 中修改普通的 local 变量,编译器也会报错。那么该如何修改外部变量呢?有两种办法,第一种是可以修改 static 全局变量;第二种是可以修改用新关键字 __block 修饰的变量。请看:
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
__block int blockLocal = 100;
static int staticLocal = 100;
void (^aBlock)(void) = ^(void){
NSLog(@" >> Sum: %d\n", global + staticLocal);
global++;
blockLocal++;
staticLocal++;
};
aBlock();
NSLog(@"After modified, global: %d, block local: %d, static local: %d\n", global, blockLocal, staticLocal);
[pool drain];
执行之后,值均为:101
相似的情况,我们也可以引用 static block 或 __block block。比如我们可以用他们来实现 block 递归:
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
// 1
void (^aBlock)(int) = 0;
static void (^ const staticBlock)(int) = ^(int i) {
if (i > 0) {
NSLog(@" >> static %d", i);
staticBlock(i - 1);
}
};
aBlock = staticBlock;
aBlock(5);
// 2
__block void (^blockBlock)(int);
blockBlock = ^(int i) {
if (i > 0) {
NSLog(@" >> block %d", i);
blockBlock(i - 1);
}
};
blockBlock(5);
[pool drain];
4,上面我们介绍了 block 及其基本用法,但还没有涉及并行编程。 block 与 Dispatch Queue 分发队列结合起来使用,是 iOS 中并行编程的利器。请看代码:
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
initData();
// create dispatch queue
//
dispatch_queue_t queue = dispatch_queue_create("StudyBlocks", NULL);
dispatch_async(queue, ^(void) {
int sum = 0;
for(int i = 0; i < Length; i++)
sum += data[i];
NSLog(@" >> Sum: %d", sum);
flag = YES;
});
// wait util work is done.
//
while (!flag);
dispatch_release(queue);
[pool drain];
上面的 block 仅仅是将数组求和。首先,我们创建一个串行分发队列,然后将一个 block 任务加入到其中并行运行,这样 block 就会在新的线程中运行,直到结束返回主线程。在这里要注意 flag 的使用。flag 是 static 的,所以我们可以 block 中修改它。 语句 while (!flag); 的目的是保证主线程不会 blcok 所在线程之前结束。
dispatch_queue_t 的定义如下:
typedef void (^dispatch_block_t)( void);
这意味着加入 dispatch_queue 中的 block 必须是无参数也无返回值的。
dispatch_queue_create 的定义如下:
dispatch_queue_t dispatch_queue_create(const char *label, dispatch_queue_attr_t attr);
这个函数带有两个参数:一个用于标识 dispatch_queue 的字符串;一个是保留的 dispatch_queue 属性,将其设置为 NULL 即可。
我们也可以使用
dispatch_queue_t dispatch_get_global_queue(long priority, unsigned long flags);
来获得全局的 dispatch_queue,参数 priority 表示优先级,值得注意的是:我们不能修改该函数返回的 dispatch_queue。
dispatch_async 函数的定义如下:
void dispatch_async(dispatch_queue_t queue, dispatch_block_t block);
它是将一个 block 加入一个 dispatch_queue,这个 block 会再其后得到调度时,并行运行。
相应的 dispatch_sync 函数就是同步执行了,一般很少用到。比如上面的代码如果我们修改为 dispatch_sync,那么就无需编写 flag 同步代码了。
5,dispatch_queue 的运作机制及线程间同步
我们可以将许多 blocks 用 dispatch_async 函数提交到到 dispatch_queue 串行运行。这些 blocks 是按照 FIFO(先入先出)规则调度的,也就是说,先加入的先执行,后加入的一定后执行,但在某一个时刻,可能有多个 block 同时在执行。
在上面的例子中,我们的主线程一直在轮询 flag 以便知晓 block 线程是否执行完毕,这样做的效率是很低的,严重浪费 CPU 资源。我们可以使用一些通信机制来解决这个问题,如:semaphore(信号量)。 semaphore 的原理很简单,就是生产-消费模式,必须生产一些资源才能消费,没有资源的时候,那我就啥也不干,直到资源就绪。
下面来看代码:
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
initData();
// Create a semaphore with 0 resource
//
__block dispatch_semaphore_t sem = dispatch_semaphore_create(0);
// create dispatch semaphore
//
dispatch_queue_t queue = dispatch_queue_create("StudyBlocks", NULL);
dispatch_async(queue, ^(void) {
int sum = 0;
for(int i = 0; i < Length; i++)
sum += data[i];
NSLog(@" >> Sum: %d", sum);
// signal the semaphore: add 1 resource
//
dispatch_semaphore_signal(sem);
});
// wait for the semaphore: wait until resource is ready.
//
dispatch_semaphore_wait(sem, DISPATCH_TIME_FOREVER);
dispatch_release(sem);
dispatch_release(queue);
[pool drain];
首先我们创建一个 __block semaphore,并将其资源初始值设置为 0 (不能少于 0),在这里表示任务还没有完成,没有资源可用主线程不要做事情。然后在 block 任务完成之后,使用 dispatch_semaphore_signal 增加 semaphore 计数(可理解为资源数),表明任务完成,有资源可用主线程可以做事情了。而主线程中的 dispatch_semaphore_wait 就是减少 semaphore 的计数,如果资源数少于 0,则表明资源还可不得,我得按照FIFO(先等先得)的规则等待资源就绪,一旦资源就绪并且得到调度了,我再执行。
6 示例:
下面我们来看一个按照 FIFO 顺序执行并用 semaphore 同步的例子:先将数组求和再依次减去数组。
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
initData();
__block int sum = 0;
// Create a semaphore with 0 resource
//
__block dispatch_semaphore_t sem = dispatch_semaphore_create(0);
__block dispatch_semaphore_t taskSem = dispatch_semaphore_create(0);
// create dispatch semaphore
//
dispatch_queue_t queue = dispatch_queue_create("StudyBlocks", NULL);
dispatch_block_t task1 = ^(void) {
int s = 0;
for (int i = 0; i < Length; i++)
s += data[i];
sum = s;
NSLog(@" >> after add: %d", sum);
dispatch_semaphore_signal(taskSem);
};
dispatch_block_t task2 = ^(void) {
dispatch_semaphore_wait(taskSem, DISPATCH_TIME_FOREVER);
int s = sum;
for (int i = 0; i < Length; i++)
s -= data[i];
sum = s;
NSLog(@" >> after subtract: %d", sum);
dispatch_semaphore_signal(sem);
};
dispatch_async(queue, task1);
dispatch_async(queue, task2);
// wait for the semaphore: wait until resource is ready.
//
dispatch_semaphore_wait(sem, DISPATCH_TIME_FOREVER);
dispatch_release(taskSem);
dispatch_release(sem);
dispatch_release(queue);
[pool drain];
在上面的代码中,我们利用了 dispatch_queue 的 FIFO 特性,确保 task1 先于 task2 执行,而 task2 必须等待直到 task1 执行完毕才开始干正事,主线程又必须等待 task2 才能干正事。 这样我们就可以保证先求和,再相减,然后再让主线程运行结束这个顺序。
7,使用 dispatch_apply 进行并发迭代:
对于上面的求和操作,我们也可以使用 dispatch_apply 来简化代码的编写:
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
initData();
dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);
__block int sum = 0;
__block int *pArray = data;
// iterations
//
dispatch_apply(Length, queue, ^(size_t i) {
sum += pArray[i];
});
NSLog(@" >> sum: %d", sum);
dispatch_release(queue);
[pool drain];
注意这里使用了全局 dispatch_queue。
dispatch_apply 的定义如下:
dispatch_apply(size_t iterations, dispatch_queue_t queue, void (^block)(size_t));
参数 iterations 表示迭代的次数,void (^block)(size_t) 是 block 循环体。这么做与 for 循环相比有什么好处呢?答案是:并行,这里的求和是并行的,并不是按照顺序依次执行求和的。
8, dispatch group
我们可以将完成一组相关任务的 block 添加到一个 dispatch group 中去,这样可以在 group 中所有 block 任务都完成之后,再做其他事情。比如 6 中的示例也可以使用 dispatch group 实现:
NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
initData();
__block int sum = 0;
// Create a semaphore with 0 resource
//
__block dispatch_semaphore_t taskSem = dispatch_semaphore_create(0);
// create dispatch semaphore
//
dispatch_queue_t queue = dispatch_queue_create("StudyBlocks", NULL);
dispatch_group_t group = dispatch_group_create();
dispatch_block_t task1 = ^(void) {
int s = 0;
for (int i = 0; i < Length; i++)
s += data[i];
sum = s;
NSLog(@" >> after add: %d", sum);
dispatch_semaphore_signal(taskSem);
};
dispatch_block_t task2 = ^(void) {
dispatch_semaphore_wait(taskSem, DISPATCH_TIME_FOREVER);
int s = sum;
for (int i = 0; i < Length; i++)
s -= data[i];
sum = s;
NSLog(@" >> after subtract: %d", sum);
};
// Fork
dispatch_group_async(group, queue, task1);
dispatch_group_async(group, queue, task2);
// Join
dispatch_group_wait(group, DISPATCH_TIME_FOREVER);
dispatch_release(taskSem);
dispatch_release(queue);
dispatch_release(group);
[pool drain];
在上面的代码中,我们使用 dispatch_group_create 创建一个 dispatch_group_t,然后使用语句:dispatch_group_async(group, queue, task1); 将 block 任务加入队列中,并与组关联,这样我们就可以使用 dispatch_group_wait(group, DISPATCH_TIME_FOREVER); 来等待组中所有的 block 任务完成再继续执行。
至此我们了解了 dispatch queue 以及 block 并行编程相关基本知识,开始在项目中运用它们吧。
参考资料:
Concurrency Programming Guide:
http://developer.apple.com/library/ios/#documentation/General/Conceptual/ConcurrencyProgrammingGuide/Introduction/Introduction.html
深入浅出Cocoa多线程编程之 block 与 dispatch quene的更多相关文章
- [Cocoa]深入浅出Cocoa多线程编程之 block 与 dispatch quene
深入浅出 Cocoa 多线程编程之 block 与 dispatch quene 罗朝辉(http://www.cppblog.com/kesalin CC 许可,转载请注明出处 block 是 Ap ...
- [转] iOS多线程编程之Grand Central Dispatch(GCD)介绍和使用
介绍: Grand Central Dispatch 简称(GCD)是苹果公司开发的技术,以优化的应用程序支持多核心处理器和其他的对称多处理系统的系统.这建立在任务并行执行的线程池模式的基础上的.它首 ...
- iOS 多线程编程之Grand Central Dispatch(GCD)
介绍: Grand Central Dispatch 简称(GCD)是苹果公司开发的技术,以优化的应用程序支持多核心处理器和其它的对称多处理系统的系统.这建立在任务并行运行的线程池模式的基础上的. 它 ...
- IOS 多线程编程之Grand Central Dispatch(GCD)介绍和使用 多线程基础和练习
介绍:前面内容源自网络 Grand Central Dispatch 简称(GCD)是苹果公司开发的技术,以优化的应用程序支持多核心处理器和其他的对称多处理系统的系统.这建立在任务并行执行的线程池模式 ...
- iOS多线程编程之Grand Central Dispatch(GCD)介绍和使用
http://blog.csdn.net/totogo2010/article/details/8016129 GCD很好的博文
- iOS多线程编程之NSThread的使用
目录(?)[-] 简介 iOS有三种多线程编程的技术分别是 三种方式的有缺点介绍 NSThread的使用 NSThread 有两种直接创建方式 参数的意义 PS不显式创建线程的方法 下载图片的例子 ...
- iOS多线程编程之NSThread的使用(转)
本文由http://blog.csdn.net/totogo2010/原创 1.简介: 1.1 iOS有三种多线程编程的技术,分别是: 1..NSThread 2.Cocoa NSOperation ...
- [转]iOS多线程编程之NSThread的使用
1.简介: 1.1 iOS有三种多线程编程的技术,分别是: 1..NSThread 2.Cocoa NSOperation (iOS多线程编程之NSOperation和NSOperationQueue ...
- iOS多线程编程之NSThread的使用(转载)
1.简介: 1.1 iOS有三种多线程编程的技术,分别是: 1.NSThread 2.Cocoa NSOperation (iOS多线程编程之NSOperation和NSOperationQueue的 ...
随机推荐
- C语言中switch case语句可变参实现方法(case 参数 空格...空格 参数 :)
正常情况下,switch case语句是这么写的: : : ... ;break ; default : ... ;break ; } 接下来说一种不常见的,但是对于多参数有很大的帮助的写法: 先给一 ...
- socket系列之客户端socket——Socket类
假设TCP套接字服务器端已经建立好并正在监听客户端的连接了,那么客户端就可以通过Socket类来发起连接.客户端发起一个连接请求后,就被动地在等待服务器的响应.这个类同样位于java.net包中,包含 ...
- 带你深入理解STL之List容器
上一篇博客中介绍的vector和数组类似,它拥有一段连续的内存空间,并且起始地址不变,很好的支持了随机存取,但由于是连续空间,所以在中间进行插入.删除等操作时都造成了内存块的拷贝和移动,另外在内存空间 ...
- 【移动开发】自定义ProgressBar
<ProgressBar android:layout_centerInParent="true" android:layout_width="30dp" ...
- 应付模块的R12 TRACE 和 FND Debug 文件 / FND 日志 调试
取得R12 TRACE: 1. 导航职责: 系统管理员> 配置文件> 系统> 查找 用户: 用户提交报表 配置: 初始化 SQL 语句 - 自定义 2. 点击用户栏位-编辑区域 ...
- 使用git-flow来帮助管理git代码
对git不熟悉的我,经常把git提交搞得很乱,导致在master上有许多无用的commit,最终决定好好地看一下git的使用教程,却不小心发现了还有一个git-flow的工具可以帮助我管理好git项目 ...
- 如何查看Android设备上的分区信息
Android设备上,一般都会存在一块eMMC存储芯片来存放系统和用户数据,甚至部分的引导程序. 一般设备出厂时,各个厂商都会将这块存储芯片分成很多的分区,每个分区内存放不同的内容.具体分区的布局每个 ...
- javaRMI详解
前几天在阿里内推一面的时候,面试官问到了一个关于java中RMI(Remote Method Invocation)的问题,当时感觉自己回答的还比较好,他比较满意,但那是因为他问的比较浅,所以自己看了 ...
- (九十)使用多个storyboard+代码实现控制器的分开管理
使用单个storyboard会使得项目难与管理,使用纯代码又会过于麻烦,因此如果能将二者结合起来,并且使用多个storyboard,会使得项目简单简单.方便许多. 下面以一个简单的视图关系为例,介绍多 ...
- 分布式内存网格Hazelcast源码导读
去年项目需要看了hazelcast源码,当时记录的笔记. Node是节点的抽象,里面包含节点引擎.客户端引擎.分区服务.集群服务.组播服务.连接管理.命令管理.组播属性.节点配置.本地成员.tcp地址 ...