1079: [SCOI2008]着色方案

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 2237  Solved: 1361
[Submit][Status][Discuss]

Description

  有n个木块排成一行,从左到右依次编号为1~n。你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块。
所有油漆刚好足够涂满所有木块,即c1+c2+...+ck=n。相邻两个木块涂相同色显得很难看,所以你希望统计任意两
个相邻木块颜色不同的着色方案。

Input

  第一行为一个正整数k,第二行包含k个整数c1, c2, ... , ck。

Output

  输出一个整数,即方案总数模1,000,000,007的结果。

Sample Input

3
1 2 3

Sample Output

10

HINT

100%的数据满足:1 <= k <= 15, 1 <= ci <= 5

题解

令人恶心的一道 $DP$ ...

注意到 $k$ 的范围很小, 所以首先我们可以想到的定义状态的方案是把每种油漆剩余的数量定义进状态, 但是 $15$ 维的记忆化数组怕是是个人都不想写吧...而且$5^{15}\approx 3.05\times 10^{10}$ 并不能开得下...

但是我们会发现, 其实不同的油漆只要余量相等, 对于答案的影响并没有什么区别, 所以我们可以分别将余量为 $1,2,3,4,5$ 的油漆种数定义进状态, 再加一维表示上次用的是哪种油漆, $DFS$ 处理就好了

代码挺好写, 但看起来比较恶心...

参考代码

GitHub

 #include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm> const int MOD=1e9+;
const int MAXN=; int n;
int data[MAXN];
int dp[MAXN][MAXN][MAXN][MAXN][MAXN][]; int DFS(int,int,int,int,int,int); int main(){
scanf("%d",&n);
int tmp;
for(int i=;i<n;i++){
scanf("%d",&tmp);
data[tmp]++;
}
for(int i=;i<=;i++){
dp[][][][][][i]=;
}
printf("%d\n",DFS(data[],data[],data[],data[],data[],));
return ;
} int DFS(int r1,int r2,int r3,int r4,int r5,int last){
if(dp[r1][r2][r3][r4][r5][last]!=)
return dp[r1][r2][r3][r4][r5][last];
else{
long long tmp=;
if(r1>)
tmp+=1ll*(last==?r1-:r1)*DFS(r1-,r2,r3,r4,r5,);
if(r2>)
tmp+=1ll*(last==?r2-:r2)*DFS(r1+,r2-,r3,r4,r5,);
if(r3>)
tmp+=1ll*(last==?r3-:r3)*DFS(r1,r2+,r3-,r4,r5,);
if(r4>)
tmp+=1ll*(last==?r4-:r4)*DFS(r1,r2,r3+,r4-,r5,);
if(r5>)
tmp+=1ll*r5*DFS(r1,r2,r3,r4+,r5-,);
dp[r1][r2][r3][r4][r5][last]=tmp%MOD;
return dp[r1][r2][r3][r4][r5][last];
}
}

Backup

[BZOJ 1079][SCOI 2008]着色方案的更多相关文章

  1. 【BZOJ 1079】[SCOI2008]着色方案

    Description 有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块.所有油漆刚好足够涂满所有木块,即c1+c2+...+ck=n.相邻两个木 ...

  2. [ SCOI 2008 ] 着色方案

    \(\\\) \(Description\) 给出\(K\)种颜料各自的个数\(C_i\),每一个颜料只够涂一个格子,求将颜料用完,涂一排格子,每个格子只能涂一次的条件下,相邻两个格子的颜色互不相同的 ...

  3. BZOJ 1079: [SCOI2008]着色方案 记忆化搜索

    1079: [SCOI2008]着色方案 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/p ...

  4. bzoj 1079: [SCOI2008]着色方案 DP

    1079: [SCOI2008]着色方案 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 803  Solved: 512[Submit][Status ...

  5. BZOJ 1079: [SCOI2008]着色方案(巧妙的dp)

    BZOJ 1079: [SCOI2008]着色方案(巧妙的dp) 题意:有\(n\)个木块排成一行,从左到右依次编号为\(1\)~\(n\).你有\(k\)种颜色的油漆,其中第\(i\)种颜色的油漆足 ...

  6. 【BZOJ】1079: [SCOI2008]着色方案(dp+特殊的技巧)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1079 只能想到5^15的做法...........................果然我太弱. 其实 ...

  7. Bzoj 1079 着色方案 题解

    1079: [SCOI2008]着色方案 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2237  Solved: 1361[Submit][Stat ...

  8. bzoj 1079 着色方案

    题目: 有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其 中第i 种颜色的油漆足够涂ci 个木块.所有油漆刚好足够涂满所有木块,即c1+c2+-+ck=n.相邻两个木块涂相同色显得 ...

  9. [BZOJ]1079 着色方案(SCOI2008)

    相邻色块不同的着色方案,似乎这道题已经见过3个版本了. Description 有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块.所有油漆刚好足够 ...

随机推荐

  1. JDBC连接池(三)DBCP连接池

    JDBC连接池(三)DBCP连接池 在前面的随笔中提到 了  1.JDBC自定义连接池  2. C3P0连接池 今天将介绍DBCP连接池 第一步要导入jar包   (注意:mysql和mysql 驱动 ...

  2. VMware vSphere学习整理

    知识点整理 内存选择 一般来说,每个虚拟机需要的内存在1~4GB甚至更多,还要为VMware ESXi预留一部分内存 2个6核的2U服务器配置64GB内存,4个6核或8核心的4U服务器配置128GB或 ...

  3. window.load 和$(document).ready() 区别

    1.执行时间 window.onload必须等到页面内包括图片的所有元素加载完毕后才能执行. $(document).ready()是DOM结构绘制完毕后就执行,不必等到加载完毕.2.编写个数不同 w ...

  4. Query 插件为什么要return this.each()

    jQuery.fn.test2= function(){ this.css("background","#ff0");//这里面的this为jquery对象,而 ...

  5. freemarker中的substring取子串(十四)

    freemarker中的substring取子串 1.substring取子串介绍 (1)表达式?substring(from,to) (2)当to为空时,默认的是字符串的长度 (3)from是第一个 ...

  6. activemq的案例

  7. 初识lucene(想看代码的跳过)

    最早是在百度贴吧里看到的lucene这个名称,只知道跟搜索引擎有关,因为工作中一直以来没有类似的需求,所以没有花时间学习这方面的知识. 刚过完年,公司不忙,自己闲不住把<Netty权威指南> ...

  8. Java反射机制应用实践

    反射基础 在应用反射机制之前,首先我们先来看一下如何获取一个对象对应的反射类Class,在Java中我们有三种方法可以获取一个对象的反射类. 通过getClass方法 在Java中,每一个Object ...

  9. JavaScript设计模式(9)-享元模式

    享元模式 1. 介绍 一种优化模式 适合解决因创建大量类似对象而累积性能问题 javaScript 代码可能很快就用光浏览器的内容,通过把大量独立对象转化为少量共享对象,可以降低运行 Web 应用所需 ...

  10. Shell 的特殊变量

    2017-08-02 1.$0 获取当前脚本的名称或全路径 cat name.sh Linux shell sh name.sh echo $0 name.sh 2.$n(n >=1) 获取脚本 ...