1079: [SCOI2008]着色方案

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 2237  Solved: 1361
[Submit][Status][Discuss]

Description

  有n个木块排成一行,从左到右依次编号为1~n。你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块。
所有油漆刚好足够涂满所有木块,即c1+c2+...+ck=n。相邻两个木块涂相同色显得很难看,所以你希望统计任意两
个相邻木块颜色不同的着色方案。

Input

  第一行为一个正整数k,第二行包含k个整数c1, c2, ... , ck。

Output

  输出一个整数,即方案总数模1,000,000,007的结果。

Sample Input

3
1 2 3

Sample Output

10

HINT

100%的数据满足:1 <= k <= 15, 1 <= ci <= 5

题解

令人恶心的一道 $DP$ ...

注意到 $k$ 的范围很小, 所以首先我们可以想到的定义状态的方案是把每种油漆剩余的数量定义进状态, 但是 $15$ 维的记忆化数组怕是是个人都不想写吧...而且$5^{15}\approx 3.05\times 10^{10}$ 并不能开得下...

但是我们会发现, 其实不同的油漆只要余量相等, 对于答案的影响并没有什么区别, 所以我们可以分别将余量为 $1,2,3,4,5$ 的油漆种数定义进状态, 再加一维表示上次用的是哪种油漆, $DFS$ 处理就好了

代码挺好写, 但看起来比较恶心...

参考代码

GitHub

 #include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm> const int MOD=1e9+;
const int MAXN=; int n;
int data[MAXN];
int dp[MAXN][MAXN][MAXN][MAXN][MAXN][]; int DFS(int,int,int,int,int,int); int main(){
scanf("%d",&n);
int tmp;
for(int i=;i<n;i++){
scanf("%d",&tmp);
data[tmp]++;
}
for(int i=;i<=;i++){
dp[][][][][][i]=;
}
printf("%d\n",DFS(data[],data[],data[],data[],data[],));
return ;
} int DFS(int r1,int r2,int r3,int r4,int r5,int last){
if(dp[r1][r2][r3][r4][r5][last]!=)
return dp[r1][r2][r3][r4][r5][last];
else{
long long tmp=;
if(r1>)
tmp+=1ll*(last==?r1-:r1)*DFS(r1-,r2,r3,r4,r5,);
if(r2>)
tmp+=1ll*(last==?r2-:r2)*DFS(r1+,r2-,r3,r4,r5,);
if(r3>)
tmp+=1ll*(last==?r3-:r3)*DFS(r1,r2+,r3-,r4,r5,);
if(r4>)
tmp+=1ll*(last==?r4-:r4)*DFS(r1,r2,r3+,r4-,r5,);
if(r5>)
tmp+=1ll*r5*DFS(r1,r2,r3,r4+,r5-,);
dp[r1][r2][r3][r4][r5][last]=tmp%MOD;
return dp[r1][r2][r3][r4][r5][last];
}
}

Backup

[BZOJ 1079][SCOI 2008]着色方案的更多相关文章

  1. 【BZOJ 1079】[SCOI2008]着色方案

    Description 有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块.所有油漆刚好足够涂满所有木块,即c1+c2+...+ck=n.相邻两个木 ...

  2. [ SCOI 2008 ] 着色方案

    \(\\\) \(Description\) 给出\(K\)种颜料各自的个数\(C_i\),每一个颜料只够涂一个格子,求将颜料用完,涂一排格子,每个格子只能涂一次的条件下,相邻两个格子的颜色互不相同的 ...

  3. BZOJ 1079: [SCOI2008]着色方案 记忆化搜索

    1079: [SCOI2008]着色方案 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/p ...

  4. bzoj 1079: [SCOI2008]着色方案 DP

    1079: [SCOI2008]着色方案 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 803  Solved: 512[Submit][Status ...

  5. BZOJ 1079: [SCOI2008]着色方案(巧妙的dp)

    BZOJ 1079: [SCOI2008]着色方案(巧妙的dp) 题意:有\(n\)个木块排成一行,从左到右依次编号为\(1\)~\(n\).你有\(k\)种颜色的油漆,其中第\(i\)种颜色的油漆足 ...

  6. 【BZOJ】1079: [SCOI2008]着色方案(dp+特殊的技巧)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1079 只能想到5^15的做法...........................果然我太弱. 其实 ...

  7. Bzoj 1079 着色方案 题解

    1079: [SCOI2008]着色方案 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2237  Solved: 1361[Submit][Stat ...

  8. bzoj 1079 着色方案

    题目: 有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其 中第i 种颜色的油漆足够涂ci 个木块.所有油漆刚好足够涂满所有木块,即c1+c2+-+ck=n.相邻两个木块涂相同色显得 ...

  9. [BZOJ]1079 着色方案(SCOI2008)

    相邻色块不同的着色方案,似乎这道题已经见过3个版本了. Description 有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块.所有油漆刚好足够 ...

随机推荐

  1. HighCharts基本折线图

    1.设计源码 <!DOCTYPE html> <!-- To change this license header, choose License Headers in Projec ...

  2. 芝麻HTTP:Python爬虫实战之抓取淘宝MM照片

    本篇目标 1.抓取淘宝MM的姓名,头像,年龄 2.抓取每一个MM的资料简介以及写真图片 3.把每一个MM的写真图片按照文件夹保存到本地 4.熟悉文件保存的过程 1.URL的格式 在这里我们用到的URL ...

  3. Django学习-3-请求流程

    Django请求生命周期     -> URL对应关系(匹配) -> 视图函数 -> 返回用户字符串     -> URL对应关系(匹配) -> 视图函数 -> 打 ...

  4. RobotFramework自动化测试框架-DatabaseLibrary库的使用(对数据库的操作)

    在自动化过程中,我们经常需要连接不同的数据库,并且对数据库进行很多不同的操作,RobotFramework中,提供了DatabaseLibrary这个库来操作数据库,我们可以按照官网中的说明来安装Da ...

  5. 第九篇:Map/Reduce 工作机制分析 - 作业的执行流程

    前言 从运行我们的 Map/Reduce 程序,到结果的提交,Hadoop 平台其实做了很多事情. 那么 Hadoop 平台到底做了什么事情,让 Map/Reduce 程序可以如此 "轻易& ...

  6. 期望$DP$ 方法总结

    期望\(DP\) 方法总结 这个题目太大了,变化也层出不穷,这里只是我的一点心得,不定期更新! 1. 递推式问题 对于无穷进行的操作期望步数问题,一般可用递推式解决. 对于一个问题\(ans[x]\) ...

  7. webstorm提交版本时,忽略特定文件

    项目提交时,部分本地配置文件,不需要提交,这时候需要在整个版本控制中忽略掉文件的提交. 操作如下: File -> Settings -> Version Control -> Ig ...

  8. sqlserver存储过程及临时表在统计中的应用

    use ResourceShare --统计使用情况 alter PROCEDURE StaSheryUse @start datetime, @end datetime, @orgId int AS ...

  9. C++学习-2

    副本机制 lambda不能取地址,无法当作函数指针 [1](2){3}(4)匿名lambda 1捕获列表   =只读    2后加mutable就可以修改副本 &读写              ...

  10. 22.jQuery(实例)

    1.开关灯效果 <!DOCTYPE html> <html lang="en"> <head> <meta charset="U ...