[CVPR 2016] Weakly Supervised Deep Detection Networks论文笔记
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 }
p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #042eee }
p.p3 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333; min-height: 15.0px }
p.p4 { margin: 0.0px 0.0px 0.0px 0.0px; font: 15.0px "Helvetica Neue"; color: #323333 }
li.li1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 }
span.s1 { }
span.s2 { text-decoration: underline }
ul.ul1 { list-style-type: disc }
ul.ul2 { list-style-type: circle }
Weakly Supervised Deep Detection Networks,Hakan Bilen,Andrea Vedaldi
亮点
- 把弱监督检测问题解释为proposal排序的问题,通过比较所有proposal的类别分数得到一个比较正确的排序,这种思想与检测中评测标准的计算方法一致

相关工作
The MIL strategy results in a non-convex optimization problem; in practice, solvers tend to get stuck in local optima
such that the quality of the solution strongly depends on the initialization.
- developing various initialization strategies [19, 5, 32, 4]
- [19] propose a self-paced learning strategy
- [5] initialize object locations based on the objectness score.
- [4] propose a multi-fold split of the training data to escape local optima.
- on regularizing the optimization problem [31, 1].
- [31] apply Nesterov’s smoothing technique to the latent SVM formulation
- [1] propose a smoothed version of MIL that softly labels object instances instead of choosing the highest scoring ones.
- Another line of research in WSD is based on the idea of identifying the similarity between image parts.
- [31] propose a discriminative graph-based algorithm that selects a subset of windows such that each window is connected to its nearest neighbors in positive images.
- [32] extend this method to discover multiple co-occurring part configurations.
- [36] propose an iterative technique that applies a latent semantic clustering via latent Semantic Analysis (pLSA)
- [2] propose a formulation that jointly learns a discriminative model and enforces the similarity of the selected object regions via a discriminative convex clustering algorithm
方法
本文采用的方法非常简单易懂,主要分为以下三部:
- 将特征和region proposal的结果输入spatial pyramid pooling层,取出与区域相关的特征向量,并输入两个fc层
- 分类:fc层的输出通过softmax分类器,计算出这一区域类别
- 检测:fc层的输出通过softmax分类器,与上面不同的是归一化的时候不是用类别归一化,而是用所有区域的分数进行归一化,通过区域之间的对比找到包含该类别信息最多的区域
- 某区域r属于某类别c的得分,为后两部分的积
- 全图的类别得分,为所有区域属于该类别的得分之和

训练的loss function如下

p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 }
p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 15.0px "Helvetica Neue"; color: #323333 }
li.li1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 }
span.s1 { }
ul.ul1 { list-style-type: disc }
ul.ul2 { list-style-type: circle }
ul.ul3 { list-style-type: square }
最后一项是一个校准项(按照理解轻微更改了,感觉论文notation有点问题),其目的是通过拉近feature的距离约束解的平滑性(即与正确解相近的proposal也应该得到高分)。
实验结果
本文根据basenet不同给出了4种model:S (VGG-F), M (VGG-M-1024), L (VGG-VD16)和Ens(前三种ensemble的模型)
- Ablation:
- Object proposal
- Baseline mAP: Selective Search S 31.1%, M 30.9%, L 24.3%, Ens. 33.3%
- Edge Box: +0~1.2%
- Edge Box + Edge Box Score: +1.8~5.9%
- Spatial regulariser (compared with Edge Box + Edge Box Score) mAP +1.2~4.4%
- VOC2007
- mAP on test: S +2.9%, M +3.3%, L +3.2%, Ens. +7.7% compared with [36] + context
- CorLoc on trainval: S +5.7%, M +7.6%, L +5%, Ens. +9.5% compared with [36]
- Classification AP on test: S +7.9% compared with VGG-F, M +6.5% compared with VGG-M-1024, L +0.4% compared with VGG-VD16, Ens. -0.3% compared with VGG-VD16
- VOC2010
- mAP on test: +8.8% compared with [4]
- CorLoc on trainval: +4.5% compared with [4]
缺点
本文有一个明显的缺点是只考虑了一张图中某类别物体只出现一次的情况(regulariser中仅限制了最大值及其周围的框),这一点在文中给出的failure cases中也有所体现。
[CVPR 2016] Weakly Supervised Deep Detection Networks论文笔记的更多相关文章
- [CVPR2017] Weakly Supervised Cascaded Convolutional Networks论文笔记
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px "Helvetica Neue"; color: #042eee } p. ...
- [ICCV 2019] Weakly Supervised Object Detection With Segmentation Collaboration
新在ICCV上发的弱监督物体检测文章,偷偷高兴一下,贴出我的poster,最近有点忙,话不多说,欢迎交流- https://arxiv.org/pdf/1904.00551.pdf http://op ...
- Video Frame Synthesis using Deep Voxel Flow 论文笔记
Video Frame Synthesis using Deep Voxel Flow 论文笔记 arXiv 摘要:本文解决了模拟新的视频帧的问题,要么是现有视频帧之间的插值,要么是紧跟着他们的探索. ...
- 吴恩达《深度学习》-第一门课 (Neural Networks and Deep Learning)-第四周:深层神经网络(Deep Neural Networks)-课程笔记
第四周:深层神经网络(Deep Neural Networks) 4.1 深层神经网络(Deep L-layer neural network) 有一些函数,只有非常深的神经网络能学会,而更浅的模型则 ...
- CVPR 2018paper: DeepDefense: Training Deep Neural Networks with Improved Robustness第一讲
前言:好久不见了,最近一直瞎忙活,博客好久都没有更新了,表示道歉.希望大家在新的一年中工作顺利,学业进步,共勉! 今天我们介绍深度神经网络的缺点:无论模型有多深,无论是卷积还是RNN,都有的问题:以图 ...
- [paper reading] C-MIL: Continuation Multiple Instance Learning for Weakly Supervised Object Detection CVPR2019
MIL陷入局部最优,检测到局部,无法完整的检测到物体.将instance划分为空间相关和类别相关的子集.在这些子集中定义一系列平滑的损失近似代替原损失函数,优化这些平滑损失. C-MIL learns ...
- StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 论文笔记
StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 本文将利 ...
- [CVPR2015] Is object localization for free? – Weakly-supervised learning with convolutional neural networks论文笔记
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 } p. ...
- 【医学影像】《Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning》论文笔记
这篇论文的作者是张康教授为首的团队,联合国内外众多医院及科研机构,合力完成,最后发表在cell上,实至名归. 从方法的角度上来说,与上一篇博客中的论文很相似,采用的都是InceptionV3模型,同时 ...
随机推荐
- 【uWSGI】 listen queue of socket (fd: 3) 错误分析
现在django的应用基本都是使用uWSGI来部署,类似下面 listen queue of socket "127.0.0.1:9001" (fd: 3) 的错误出现过2次,下面 ...
- IE11 开启F12开发人员工具中的 始终从服务器刷新
在进行页面脚本调试时,经常需要清除浏览器缓存来获取最新的脚本文件,IE11之前的浏览器版本我们可以按F12调出开发人员工具,在缓存选项中开启"始终从服务器中刷新"的设置后我们就不需 ...
- 反对抄袭 正解spring的@Autowired 不要相信网上的错误版本
首先,最重要的, @Autowired的就是用来来消除 set ,get方法. 有些介绍,如著名的马士兵,说要在set方法上进行注入.我当时就看不明白了,既然只取消了一个GET,这个@Autowire ...
- 网站开发进阶(二十五)js如何将html表格导出为excel文件
js如何将html表格导出为excel文件 赠人玫瑰,手留余香.若您感觉此篇博文对您有用,请花费2秒时间点个赞,您的鼓励是我不断前进的动力,共勉! jsp页面数据导出成excel的方法很 ...
- Mplayer 的编译
由于项目要用到mplayer,所以要对mplayer进行编译,首先我的平台如下: 系统:windows xp2 安装好mingw+msys,目录为c:/mingw,其中装的gcc是4.3.2版本的. ...
- infiniDB的论坛
http://infinidb.co/community 包括了基本的内容. 安装目录?
- Oracle Applications DBA 基础(一)
1.引子 2014年9月13日 20:33 <oracle Applications DBA 基础>介绍Oracle Applications R12的系统架构, 数据库后台及应用系统的基 ...
- Gradle 1.12用户指南翻译——第二十八章. Jetty 插件
其他章节的翻译请参见: http://blog.csdn.net/column/details/gradle-translation.html 翻译项目请关注Github上的地址: https://g ...
- 数据结构是哈希表(hashTable)
哈希表也称为散列表,是根据关键字值(key value)而直接进行访问的数据结构.也就是说,它通过把关键字值映射到一个位置来访问记录,以加快查找的速度.这个映射函数称为哈希函数(也称为散列函数),映射 ...
- 带三方登录(qq,微信,微博)
实现QQ.微信.新浪微博和百度第三方登录(Android Studio) 前言: 对于大多数的APP都有第三方登录这个功能,自己也做过几次,最近又有一个新项目用到了第三方登录,所以特意总结了一下关于 ...