p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 }
p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #042eee }
p.p3 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333; min-height: 15.0px }
p.p4 { margin: 0.0px 0.0px 0.0px 0.0px; font: 15.0px "Helvetica Neue"; color: #323333 }
li.li1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 }
span.s1 { }
span.s2 { text-decoration: underline }
ul.ul1 { list-style-type: disc }
ul.ul2 { list-style-type: circle }

Weakly Supervised Deep Detection Networks,Hakan Bilen,Andrea Vedaldi

https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Bilen_Weakly_Supervised_Deep_CVPR_2016_paper.pdf

亮点

  • 把弱监督检测问题解释为proposal排序的问题,通过比较所有proposal的类别分数得到一个比较正确的排序,这种思想与检测中评测标准的计算方法一致

相关工作

The MIL strategy results in a non-convex optimization problem; in practice, solvers tend to get stuck in local optima

such that the quality of the solution strongly depends on the initialization.

  • developing various initialization strategies [19, 5, 32, 4]
    • [19] propose a self-paced learning strategy
    • [5] initialize object locations based on the objectness score.
    • [4] propose a multi-fold split of the training data to escape local optima.
  • on regularizing the optimization problem [31, 1].
    • [31] apply Nesterov’s smoothing technique to the latent SVM formulation
    • [1] propose a smoothed version of MIL that softly labels object instances instead of choosing the highest scoring ones.
  • Another line of research in WSD is based on the idea of identifying the similarity between image parts.
  • [31] propose a discriminative graph-based algorithm that selects a subset of windows such that each window is connected to its nearest neighbors in positive images.
  • [32] extend this method to discover multiple co-occurring part configurations.
  • [36] propose an iterative technique that applies a latent semantic clustering via latent Semantic Analysis (pLSA)
  • [2] propose a formulation that jointly learns a discriminative model and enforces the similarity of the selected object regions via a discriminative convex clustering algorithm

方法

本文采用的方法非常简单易懂,主要分为以下三部:

  • 将特征和region proposal的结果输入spatial pyramid pooling层,取出与区域相关的特征向量,并输入两个fc层
  • 分类:fc层的输出通过softmax分类器,计算出这一区域类别
  • 检测:fc层的输出通过softmax分类器,与上面不同的是归一化的时候不是用类别归一化,而是用所有区域的分数进行归一化,通过区域之间的对比找到包含该类别信息最多的区域
    • 某区域r属于某类别c的得分,为后两部分的积
    • 全图的类别得分,为所有区域属于该类别的得分之和

训练的loss function如下

p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 }
p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 15.0px "Helvetica Neue"; color: #323333 }
li.li1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 }
span.s1 { }
ul.ul1 { list-style-type: disc }
ul.ul2 { list-style-type: circle }
ul.ul3 { list-style-type: square }

最后一项是一个校准项(按照理解轻微更改了,感觉论文notation有点问题),其目的是通过拉近feature的距离约束解的平滑性(即与正确解相近的proposal也应该得到高分)。

实验结果

本文根据basenet不同给出了4种model:S (VGG-F), M (VGG-M-1024), L (VGG-VD16)和Ens(前三种ensemble的模型)

  • Ablation:
    • Object proposal
      • Baseline mAP: Selective Search S 31.1%, M 30.9%, L 24.3%, Ens. 33.3%
      • Edge Box: +0~1.2%
      • Edge Box + Edge Box Score: +1.8~5.9%
    • Spatial regulariser (compared with Edge Box + Edge Box Score) mAP +1.2~4.4%
  • VOC2007
    • mAP on test: S +2.9%, M +3.3%, L +3.2%, Ens. +7.7% compared with [36] + context
    • CorLoc on trainval: S +5.7%, M +7.6%, L +5%, Ens. +9.5% compared with [36]
    • Classification AP on test: S +7.9% compared with VGG-F, M +6.5% compared with VGG-M-1024, L +0.4% compared with VGG-VD16, Ens. -0.3% compared with VGG-VD16
  • VOC2010
    • mAP on test: +8.8% compared with [4]
    • CorLoc on trainval: +4.5% compared with [4]

缺点

本文有一个明显的缺点是只考虑了一张图中某类别物体只出现一次的情况(regulariser中仅限制了最大值及其周围的框),这一点在文中给出的failure cases中也有所体现。

[CVPR 2016] Weakly Supervised Deep Detection Networks论文笔记的更多相关文章

  1. [CVPR2017] Weakly Supervised Cascaded Convolutional Networks论文笔记

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px "Helvetica Neue"; color: #042eee } p. ...

  2. [ICCV 2019] Weakly Supervised Object Detection With Segmentation Collaboration

    新在ICCV上发的弱监督物体检测文章,偷偷高兴一下,贴出我的poster,最近有点忙,话不多说,欢迎交流- https://arxiv.org/pdf/1904.00551.pdf http://op ...

  3. Video Frame Synthesis using Deep Voxel Flow 论文笔记

    Video Frame Synthesis using Deep Voxel Flow 论文笔记 arXiv 摘要:本文解决了模拟新的视频帧的问题,要么是现有视频帧之间的插值,要么是紧跟着他们的探索. ...

  4. 吴恩达《深度学习》-第一门课 (Neural Networks and Deep Learning)-第四周:深层神经网络(Deep Neural Networks)-课程笔记

    第四周:深层神经网络(Deep Neural Networks) 4.1 深层神经网络(Deep L-layer neural network) 有一些函数,只有非常深的神经网络能学会,而更浅的模型则 ...

  5. CVPR 2018paper: DeepDefense: Training Deep Neural Networks with Improved Robustness第一讲

    前言:好久不见了,最近一直瞎忙活,博客好久都没有更新了,表示道歉.希望大家在新的一年中工作顺利,学业进步,共勉! 今天我们介绍深度神经网络的缺点:无论模型有多深,无论是卷积还是RNN,都有的问题:以图 ...

  6. [paper reading] C-MIL: Continuation Multiple Instance Learning for Weakly Supervised Object Detection CVPR2019

    MIL陷入局部最优,检测到局部,无法完整的检测到物体.将instance划分为空间相关和类别相关的子集.在这些子集中定义一系列平滑的损失近似代替原损失函数,优化这些平滑损失. C-MIL learns ...

  7. StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 论文笔记

    StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks  本文将利 ...

  8. [CVPR2015] Is object localization for free? – Weakly-supervised learning with convolutional neural networks论文笔记

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 } p. ...

  9. 【医学影像】《Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning》论文笔记

    这篇论文的作者是张康教授为首的团队,联合国内外众多医院及科研机构,合力完成,最后发表在cell上,实至名归. 从方法的角度上来说,与上一篇博客中的论文很相似,采用的都是InceptionV3模型,同时 ...

随机推荐

  1. 4种方法让SpringMVC接收多个对象(转:http://blog.csdn.net/lutinghuan/article/details/46820023)

    问题背景: 我要在一个表单里同时一次性提交多名乘客的个人信息到SpringMVC,前端HTML和SpringMVC Controller里该如何处理? 第1种方法:表单提交,以字段数组接收: 第2种方 ...

  2. 【Android 应用开发】Android屏幕适配解析 - 详解像素,设备独立像素,归一化密度,精确密度及各种资源对应的尺寸密度分辨率适配问题

    . 作者 :万境绝尘 转载请注明出处 : http://blog.csdn.net/shulianghan/article/details/19698511 . 最近遇到了一系列的屏幕适配问题, 以及 ...

  3. 从头到尾解析Hash表算法

    via:点击打开链接 十一.从头到尾解析Hash 表算法 作者:July.wuliming.pkuoliver   出处:http://blog.csdn.net/v_JULY_v.   说明:本文分 ...

  4. AngularJS进阶(十四)AngularJS灵异代码事件

    AngularJS灵异代码事件 注:请点击此处进行充电! 事情原委 router_sys.js源代码如下: 自己在html路由跳转的代码如下: 但是在实际路由过程中,却路由到了下面的状态,相应的页面中 ...

  5. java 编程性能调优

    一.避免在循环条件中使用复杂表达式 在不做编译优化的情况下,在循环中,循环条件会被反复计算,如果不使用复杂表达式,而使循环条件值不变的话,程序将会运行的更快. 例子: import java.util ...

  6. android 开发从入门到精通

    Android-Tips This is an awesome list of tips for android. If you are a beginner, this list will be t ...

  7. Socket层实现系列 — accept()的实现(一)

    本文主要介绍了accept()的系统调用.Socket层实现,以及TCP层实现. 内核版本:3.6 Author:zhangskd @ csdn blog 应用层 int accept(int soc ...

  8. 本人在CSDN上的技术博客访问量突破了10万次,特此截图留念

                从 2011-11-16在CSDN开博至今,将近三年.  在近三年的时间里,本博的访问量于2014-07-01突破了10万次,单篇博文<软件开发高手须掌握的4大SQL精髓 ...

  9. FreeMarker系列学习笔记

    FreeMarker是一个非常优秀的模板引擎,这个模板引擎可用于任何场景,FreeMarker负责将数据模型中的数据合并到模板中,从而生成标准输出.FreeMarker可以提供昜好的团队协作,对于界面 ...

  10. struts2线程安全

     struts2线程安全 2012-02-16 21:07:58 分类: 系统运维 问题:Struts 2 Action对象为每一个请求产生一个实例,因此没有线程安全问题.Spring的Ioc容器管理 ...