这道题目题面真长,废话一堆。

另外:这大概是我第一道独立做出来的HNOI2011年以后的题目了吧。像我水平这么差的都能做出来,dalao您不妨试一下自己想想?

题目大意:给一个DAG,其中1号点没有入度,现在新加入一条不重复的边,使得它可能有环。求它的生成子图个数,使得子图正好包含N-1条边且1号点与其它的所有点连通。

题目分析:

我们首先要发现这是一个树的结构!有向的树。

分析树的特点,树的父亲只有一个,我们不妨从这里入手。

在这一个生成子图中,谁是谁的父亲?

我们知道1号点一定是root,这是为什么呢?

原因在于一号点没有入度,我们就认为了它是root。

那么假设有一条x->y的路径,那么x就是y的父亲,这样的定义是合理的。

考虑不加边之前的情况,图是一个DAG,我们求它的生成树(姑且这么叫吧)。

根据我们上面的分析,我们猜想:除一号点外所有点的入度乘积为该图的生成树数量。

证明如下:

首先我们考虑这个是怎么来的。每个点选择一个父亲,则根据乘法原理得到上面的猜想。

那么我们的命题是:每个点选一个父亲,则这个方案必定合法。

我们一共对N-1个点选了到fa的边,每次选择都合并了两个点,共合并了N-1次,因此共N个点被合并,又由于不存在环的情况,所以这样的方案是合法的。

考虑多了一条边的情况。那么我们由于已经求得了所有不包含这条边的情况,我们只需要分析多了这条边的情况。

假设这是一条从x到y的边。当这条边必选的时候,y点必定不被考虑。因为它的父亲已经确定。

那么我们对剩下的点重新做一遍乘法,得到了ans2。

考虑答案多了什么。

当选出的边与当前边成环的时候,这个并不是一个生成树,我们没办法解决了吗?当然不是。

我们不妨单独拿出一个环考虑。当形成了这个环的时候,对答案的影响是多少。实际上这不难统计,把剩下的点的入度全部乘起来就是答案。嘿嘿,这不就是总和除以现在的点数吗。

那么我们考虑求y到x的路径的点的入度的逆,DP一发轻松解决。然后乘法分配率证明正确性。

后记:这题我先写了个错的然后发现我想错了,答案小了,调了调变大了,然后又调,结果搜索出了正解233。

代码:

#include<bits/stdc++.h>
using namespace std; typedef long long ll; const int maxn = ;
const int mod = ;
int n,m,x,y;
ll ans,ans2;
int in[maxn],arr[maxn];
ll dist[maxn],inv[maxn];
vector <int> g[maxn];
vector <int> ng[maxn]; ll fast_pow(int now,int p){
if(p == ) return now;
if(p == ) return ;
ll z = fast_pow(now,p/); z*=z; z %= mod;
if(p & ){z*=now;z%=mod;}
return z;
} void read(){
scanf("%d%d%d%d",&n,&m,&x,&y);
for(int i=;i<=m;i++){
int a,b; scanf("%d%d",&a,&b);
g[a].push_back(b);in[b]++;
ng[b].push_back(a);
}
for(int i=;i<=n;i++) inv[i] = fast_pow(in[i],mod-);
} void dfs(int now){
if(arr[now]) return;
arr[now] = ;
for(int i=;i<ng[now].size();i++){
dfs(ng[now][i]);
dist[now] += (dist[ng[now][i]]*inv[now])%mod;
dist[now] %= mod;
}
} void work(){
ans = ans2 = ;
for(int i=;i<=n;i++) ans = (ans*in[i]) % mod;
if(x == y){printf("%lld\n",ans);return;}
if(y == ){printf("%lld\n",ans);return;}
for(int i=;i<=n;i++) if(i != y) ans2 = (ans2*in[i]) % mod;
in[y]++;inv[y] = fast_pow(in[y],mod-);dist[y] = inv[y];arr[y] = ;dfs(x);
ans += ans2; ans %= mod;
ans -= (ans*dist[x])%mod; ans += mod; ans %= mod;
printf("%lld\n",ans);
} int main(){
read();
work();
return ;
}

luogu3244 bzoj4011 HNOI2015 落忆枫音的更多相关文章

  1. bzoj4011[HNOI2015]落忆枫音 dp+容斥(?)

    4011: [HNOI2015]落忆枫音 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1125  Solved: 603[Submit][Statu ...

  2. BZOJ4011: [HNOI2015]落忆枫音

    Description 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出 这样一个问题.  「相信吧.不然我们是什么,一团肉吗?要不是有灵魂……我们 ...

  3. BZOJ4011:[HNOI2015]落忆枫音(DP,拓扑排序)

    Description 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出这样一个问题.  「相信吧.不然我们是什么,一团肉吗?要不是有灵魂……我们也 ...

  4. BZOJ4011 HNOI2015落忆枫音(动态规划+拓扑排序)

    DAG中每个点选一条入边就可以构成一棵有向树,所以如果没有环答案就是∏degreei. 考虑去掉含环的答案.可以看做把环缩点,剩下的点仍然可以任意选入边.于是去除的方案数即为∏degreei/∏deg ...

  5. [BZOJ4011][HNOI2015] 落忆枫音(学习笔记) - 拓扑+DP

    其实就是贴一下防止自己忘了,毕竟看了题解才做出来 Orz PoPoQQQ 原文链接 Description 背景太长了 给定一个DAG,和一对点(x, y), 在DAG中由x到y连一条有向边,求生成树 ...

  6. BZOJ4011: [HNOI2015]落忆枫音(dp 乘法原理)

    题意 题目链接 Sol 非常妙的一道题 设\(inder[i]\)表示\(i\)号节点的度数 首先如果是个DAG的话,可以考虑在每个点的入边中选一条边作为树形图上的边,这样\(ans = \prod_ ...

  7. [BZOJ4011][HNOI2015]落忆枫音-[dp乱搞+拓扑排序]

    Description 传送门 Solution 假如我们的图为DAG图,总方案数ans为每个点的入度In相乘(不算1号点).(等同于在每个点的入边选一条边,最后一定构成一棵树). 然而如果加了边x- ...

  8. [BZOJ4011][HNOI2015]落忆枫音:拓扑排序+容斥原理

    分析 又是一个有故事的题目背景.作为玩过原作的人,看题目背景都快看哭了ToT.强烈安利本境系列,话说SP-time的新作要咕到什么时候啊. 好像扯远了嘛不管了. 一句话题意就是求一个DAG再加上一条有 ...

  9. bzoj4011 [HNOI2015]落忆枫音 拓扑排序+DP

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4011 题解 首先考虑如果没有那么一条被新加进来的奇怪的边的做法. 我们只需要给每一个点挑一个父 ...

随机推荐

  1. Shiro笔记--shiroFilter权限过滤

    1.shiro中shiroFilter中的一些配置页面的过滤权限 <!--名字必须和web.xml里面的filter-name一样--> <bean id="shiroFi ...

  2. R语言包的安装

    pheatmap包的安装 1: 首先R语言的安装路径里面最好不要有中文路径 2: 在安装其他依存的scales和colorspace包时候要关闭防火墙 错误提示: 试开URL'https://mirr ...

  3. PHP 是一门弱类型语言

    PHP 是一门弱类型语言 我们注意到,不必向 PHP 声明该变量的数据类型. PHP 会根据变量的值,自动把变量转换为正确的数据类型. 在强类型的编程语言中,我们必须在使用变量前先声明(定义)变量的类 ...

  4. Apache服务器安装-apache已经卸载,如何删除注册在系统的服务

    cmd进入windows的命令行客户端,执行:sc delete apache 注意:以管理员的身份删除,同理,此方法也可以删除其他类似的服务.例如sc delete MongoDB.

  5. Egret学习笔记 (Egret打飞机-1.大致思路)

    大致看了一遍Egret的官方文档,就开始打算使用Egret来开发一个打飞机游戏. 首先来捋一捋思路,先来看一看一个打飞机游戏的图片 基本上一个打飞机游戏分为 开始游戏   ----------进入游戏 ...

  6. 为什么java局部变量没有初始化就会报错,而成员变量没有初始化就不会报错?

    代码如下 1.局部变量,报错!!! public void test(){ int i; System.out.println(i); } 2.成员变量,输出0 int i; @Test public ...

  7. Phpstrom操作git

    1.PHPstrom操作git[上传] 2.提交代码到仓库 2. 3.使用git bash上传代码仓库的代码到远程服务器 代开git bash进入到项目所在的目录,输入命令$  git push .上 ...

  8. java碎笔

    选择表达式 overviewPart1.setMonth_incom(rs.getString("month_incom").equals("")?" ...

  9. 【前端】Vue2全家桶案例《看漫画》之三、引入vuex

    转载请注明出处:http://www.cnblogs.com/shamoyuu/p/vue_vux_app_3.html 项目github地址:https://github.com/shamoyuu/ ...

  10. SAS︱操作语句(if、do、select、retain、array)、宏语言、统计量、运算符号

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- SAS中的一些常见的符号.运算符是一种符号①比 ...